
Abstract 
Improving the efficiency of dispatching orders to vehicles is a research hotspot in online 
ride-hailing  systems.  In  this  paper,  we  propose  a  decentralized  execution  order-
dispatching  method  based  on  multi-agent  reinforcement  learning  without  explicitly 
coordination, to address the large-scale order-dispatching problem. Furthermore, we use 
KL-divergence optimization at each time step to speed up the learning process and to 
balance the vehicles (supply) and orders (demand). Besides, with the support of the online 
platform of Didi Chuxing, we designed a hybrid system to deploy our model.
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Formulated as A Markov Game 
We regard the order-dispatching task as a sequential decision task, where the goal is to 
maximize  the  long-term ADI and  ORR per  day.  According  to  the  characters  of  the 
practical environment, each vehicle can only serve the surrounding orders, thus we model 
the order-dispatching task as a Markov Game.

Agent: We regard a vehicle as an agent.
State: A tuple <G, N, M, D>. Elements in the tuple represent the grid index, the number 
of idle vehicles, the number of valid orders and the distribution of orders' destinations 
respectively. The distribution of order's destination is a mean over the destination vectors 
of orders in grid $G$.

Action: We regard an order as a action selection, which expressed as a tuple <G_source, 
G_dest,  T,  C>,  where  G_source  represents  the  source  grid,  G_dest  represents  the 
destination grid, T is the order duration and C is the price.

Reward: Because of the goal of learning is to find a solution which maximizes the ADI 
with high ORR, so we design a reward function which is proportional to the price of each 
order.

Experiments 
We examine  the  correctness  of  our  model  in  a  toy  grid-based  order-dispatching 
environment and the practicality of our model using real-world data from three cities.

Fig 2. Toy grid-based order-dispatching environment. Blue particle: agent, Red particle: order

Table  1.  Performance comparison in  terms of  ADI and ORR with respect  to  NOD. We 
compare against with baselines in three different order distribution changes degree, namely, 
low, medium and high. KL-Based is our proposed method.

Table  2.  Performance comparison in  terms of  ADI and ORR with respect  to  NOD. We 
compare  against  baselines  using  different  datasets  from  three  cities.  KL-Based  is  our 
proposed method, which outperforms all baselines on all metrics. 

Methodology 
Non-Stationary Action Space: There is a fact that for the grid j, the orders produced 
at time t  are always different from the orders produced at other moments.  It  cannot 
ensure  that  the  action  space  is  consistent  along  with  the  whole  episode,  so  it  is 
problematical  to regard the orders as an action while ignoring the distribution of the 
variant action space. In our proposed method, we use the tuple <S, A> as an input of Q-
learning network.

Action  Selection  Q-learning:  From the perspective  of  agent  i,  we suppose that  st 
denotes the state at time t, at denotes the set of orders, then the Bellman Equation in our 
settings can be expressed as 

To balance the exploitation and exploration, the Q values related to the same orders set 
are converted into a biased strategy Boltzmann exploration

Order-Vehicle Distribution Matching: Notice that we have two goals need to achieve 
in our proposed method: (1) maximize the long horizontal ADI; (2) optimize the order 
response rate. If there are always enough vehicles in the dispatching grid, it is easy to 
decrease  the  rate  of  idle  vehicles  and improve the order  response  rate,  also  the  long 
horizontal ADI, while there is a fact that we cannot control the distribution of orders. So 
we want to make the order and vehicle distribution as similar as possible through finding 
feasible order-vehicle matches. We do not require explicit cooperation or communication 
between agents,  but  an  independent  learning  process  with  centralized  KL divergence 
optimization. 

Deployment 
 

Illustration  of  deployment.  The  hybrid  system consists  of  two  modules,  namely, 
Action Selection Q-learning (ASQ) and Estimate Travel time modules. The ASQ will 
interact  with simulator  periodically,  and it  will  be trained offline in  the simulator. 
Matching System accepts value estimation and outputs <vehicle, order> matches to 
Routing System.

Once the matching pairs of orders and vehicles has been selected from 
the  matching  system,  we  then  deliver  these  pairs  with  co-  ordinate 
information to the routing system. The routing system equipped with 
route planning techniques [32]  allows drivers to serve the order. This 
process will give feedback, i.e. reward to the hybrid system and help the 
whole system training to achieve better performance. 
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Fig 3. ORR and ADI performance under different λ settings. The horizontal axis represents 
different λ, the left and right vertical axis represent ORR and ADI respectively. 


