
Abstract
Improving the efficiency of dispatching orders to vehicles is a research hotspot in online
ride-hailing systems. In this paper, we propose a decentralized execution order-
dispatching method based on multi-agent reinforcement learning without explicitly
coordination, to address the large-scale order-dispatching problem. Furthermore, we use
KL-divergence optimization at each time step to speed up the learning process and to
balance the vehicles (supply) and orders (demand). Besides, with the support of the online
platform of Didi Chuxing, we designed a hybrid system to deploy our model.

Fig 1. Order dispatching

Multi-Agent Reinforcement Learning for Order-Dispatching
via Order-Vehicle Distribution Matching

matchidle vehicles passengers

vehicle list order list

pack up

decision-making
platform

Ming Zhou, Jiarui Jin, Weinan Zhang, Zhiwei Qin, Yan Jiao, Chenxi Wang,
Guobin Wu, Yong Yu and Jieping Ye

Formulated as A Markov Game
We regard the order-dispatching task as a sequential decision task, where the goal is to
maximize the long-term ADI and ORR per day. According to the characters of the
practical environment, each vehicle can only serve the surrounding orders, thus we model
the order-dispatching task as a Markov Game.

Agent: We regard a vehicle as an agent.
State: A tuple <G, N, M, D>. Elements in the tuple represent the grid index, the number
of idle vehicles, the number of valid orders and the distribution of orders' destinations
respectively. The distribution of order's destination is a mean over the destination vectors
of orders in grid G.

Action: We regard an order as a action selection, which expressed as a tuple <G_source,
G_dest, T, C>, where G_source represents the source grid, G_dest represents the
destination grid, T is the order duration and C is the price.

Reward: Because of the goal of learning is to find a solution which maximizes the ADI
with high ORR, so we design a reward function which is proportional to the price of each
order.

Experiments
We examine the correctness of our model in a toy grid-based order-dispatching
environment and the practicality of our model using real-world data from three cities.

Fig 2. Toy grid-based order-dispatching environment. Blue particle: agent, Red particle: order

Table 1. Performance comparison in terms of ADI and ORR with respect to NOD. We
compare against with baselines in three different order distribution changes degree, namely,
low, medium and high. KL-Based is our proposed method.

Table 2. Performance comparison in terms of ADI and ORR with respect to NOD. We
compare against baselines using different datasets from three cities. KL-Based is our
proposed method, which outperforms all baselines on all metrics.

Methodology
Non-Stationary Action Space: There is a fact that for the grid j, the orders produced
at time t are always different from the orders produced at other moments. It cannot
ensure that the action space is consistent along with the whole episode, so it is
problematical to regard the orders as an action while ignoring the distribution of the
variant action space. In our proposed method, we use the tuple <S, A> as an input of Q-
learning network.

Action Selection Q-learning: From the perspective of agent i, we suppose that st
denotes the state at time t, at denotes the set of orders, then the Bellman Equation in our
settings can be expressed as

To balance the exploitation and exploration, the Q values related to the same orders set
are converted into a biased strategy Boltzmann exploration

Order-Vehicle Distribution Matching: Notice that we have two goals need to achieve
in our proposed method: (1) maximize the long horizontal ADI; (2) optimize the order
response rate. If there are always enough vehicles in the dispatching grid, it is easy to
decrease the rate of idle vehicles and improve the order response rate, also the long
horizontal ADI, while there is a fact that we cannot control the distribution of orders. So
we want to make the order and vehicle distribution as similar as possible through finding
feasible order-vehicle matches. We do not require explicit cooperation or communication
between agents, but an independent learning process with centralized KL divergence
optimization.

Deployment

Illustration of deployment. The hybrid system consists of two modules, namely,
Action Selection Q-learning (ASQ) and Estimate Travel time modules. The ASQ will
interact with simulator periodically, and it will be trained offline in the simulator.
Matching System accepts value estimation and outputs <vehicle, order> matches to
Routing System.

Once the matching pairs of orders and vehicles has been selected from
the matching system, we then deliver these pairs with co- ordinate
information to the routing system. The routing system equipped with
route planning techniques [32] allows drivers to serve the order. This
process will give feedback, i.e. reward to the hybrid system and help the
whole system training to achieve better performance.

Data: (2, 4)
Action Selection

Q-learning
Estimate

Travel time
Hybrid
System

Matching
System

Routing
System

Simulator

Offline

Data:
(2, 4)

Q-value

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.270

0.275

0.280

0.285

0.290
ORR

ADI

6.00

6.05

6.10

6.15

6.20

6.25

6.30

6.35

6.40

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.248

0.250

0.252

0.254

0.256

0.258
ORR

ADI

5.60

5.65

5.70

5.75

5.80

5.85

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.206

0.208

0.210

0.212

0.214

0.216

0.218

0.220 ORR

ADI

4.35

4.40

4.45

4.50

4.55

4.60

(a) margin=1 (b) margin=2 (c) margin=4

Fig 3. ORR and ADI performance under different λ settings. The horizontal axis represents
different λ, the left and right vertical axis represent ORR and ADI respectively.

