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Multi-Scale User History

Figure: An illustrated example of users’multi-scale behavior pattern: the lower
layer (i.e., CTR layer) models the engagement objective through “observation →
click”; while the upper layer (i.e., CVR layer) models the satisfaction objective
through “click → conversion”.

• Users are likely to follow behaviour path “observation → click →
conversion”, where CTR prediction covers “observation → click” and
CVR prediction covers “click → conversion”.

browse and find a worthwhile one to click 

check and find a favor one to purchase
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Sequential Neural Networks in IR
• Classical sequential recommender systems mainly focus on capturing
relative orders of items, where recurrent neural networks (e.g., LSTM) are
widely adopted for user history modelling (e.g., Click-Through Rate
prediction).

• We argue that this paradigm would be limited by ignoring (i) multiple
behaviors: a user’s behaviors vary and have strong correlations; (ii)
multiple scales: a user’s behavior paths occur with different frequency.
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Figure: An illustrated example of modelling sequential user history via a plain
recurrent neural network.
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HEROES: Intra-Layer Mechanism

• In order to model the mutual influence among multiple behaviors,
we begin by introducing the definition of the inherent relevance.
For each item 𝑑!, we define 0𝑟! as inherent relevance (i.e., 2𝑟!" to
motivate purchase and 2𝑟!# to motivate click) that are solely
determinated by the item features and are free of the effect from all
the external factors such as the contextual items and the user’s past
behaviors.
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• In the contrast, we call 𝑟! behavioral relevance which are affected
by the external factors. To estimate 0𝑟! and 𝑟! for each item 𝑑!, we
further introduce 3ℎ! and ℎ! which are defined as

2ℎ!# ≔ 𝑃 2𝑟!# = 1 , 2ℎ!" ≔ 𝑃 2𝑟!" = 1
ℎ!# ≔ 𝑃 𝑟!# = 1 , ℎ!" ≔ 𝑃 𝑟!" = 1



HEROES: Intra-Layer Mechanism
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Figure 2: An illustrated example of the characteristics of the user’s
behaviors: (i) contextual dependence: click occurs when browsing in-
teresting items, which may encourage the observation, and conver-
sion happens when �nding a favored item, which may discourage
the observation; (ii) multiple time scales: conversions always hap-
pen after the user �nding a favorite clicked item, and thus conver-
sions occur less frequently than clicks.

conversion, the current prevailing approaches introduce the post-
click relevance (denoted as A E8 for 38 ) (so called the post-view con-
version rate [18, 30]), which is de�ned as

% (A E8 = 1|x8 ) B % (E8 = 1|28 = 1; x8 ) =
% (E8 = 1|x8 )
% (28 = 1|x8 )

, (2)

which allows the model to �rst separately estimate % (28 = 1|x8 )
and % (A E8 = 1|x8 ) and then recover % (E8 = 1|x8 ) by computing the
production.

As the post-click relevance (i.e., A E8 for 38 ) is built based on the
behavior path “click ! conversion”, we can similarly de�ne the
prior-click relevance (denoted as A28 for 38 ) as

% (A28 = 1|x8 ) B % (28 = 1|>8 = 1; x8 ) =
% (28 = 1|x8 )
% (>8 = 1|x8 )

, (3)

which re�ects a simple fact that a user clicks (28 = 1) the item 38
only when it is both observed (>8 = 1) and perceived as prior-click
relevant (A28 = 1). Eq. (3) has been widely used in unbiased LTR
researches [1, 12, 14, 27, 28], whose goal is to discover the prior-
click relevance from the biased click data. In contrast, biased LTR
refers to directly regarding the click as the prior-click relevance,
where the prior-click relevance is de�ned as

% (A28 = 1|x8 ) B % (28 = 1|x8 ) . (4)

3 HEROES
In this section, we present the HEROES in the context of the biased
LTR (i.e., using Eq. (4)) where we �rst describe our architecture
design and then introduce the proposed HEROES unit to construct
the architecture. Finally, we show the loss function for biased LTR.

3.1 HEROES Architecture
In HEROES, we �rst divide the entire space behavior path into
two layers: “observation ! click” in the CTR layer and “click !
conversion” in the CVR layer, and then model the user’s multiple
behaviors both within and between two layers.

We begin by introducing the de�nition of the inherent relevance:

D��������� 1. (I������� R��������) For each item38 , we de�ne
a binary variableeA8 as the inherent relevance. Speci�cally,eA28 andeA E8
are the inherent relevance to motivate a user to click and purchase
38 respectively, both of which are solely determinated by the item

Table 1: A summary of notations regarding the item 38 .

Notations Explanations

28 , E8 Click, conversion (implicit feedback)

A28 Prior-click (behavioral) relevance (see Eq. (3)
for unbiased LTR, and Eq. (4) for biased LTR)

A E8 Post-click (behavioral) relevance (see Eq. (2))

eA28 ,eA E8 Inherent relevance (see ���������� 1)

⌘28 ,⌘
E
8 ,
e⌘28 ,e⌘E8 Probability of A28 = 1, A E8 = 1,eA28 = 1,eA E8 = 1

features and are free of the e�ect from all the external factors such as
the contextual items and the user’s past behaviors.

In contrast, we call A E8 in Eq. (2) and A28 in Eq. (3) behavioral
relevance for conversion and click of 38 respectively, which are
a�ected by the external factors. To estimateeA8 and A82 for each item
38 , we further introduce e⌘8 and ⌘8 which are de�ned as

e⌘28 B % (eA28 = 1), e⌘E8 B % (eA E8 = 1);
⌘28 B % (A28 = 1), ⌘E8 B % (A E8 = 1) .

(5)

Intra-Layer Behavior Modelling. In each layer (i.e., behavior
path), since the user’s behaviors on each item 38 (i.e., ⌘8 ) can be
either excited or discouraged by the user’s previous behaviors,
we apply the Hawkes process [6, 9] to formulate the behavioral
relevance as

⌘8 := e⌘8 +’
98

_ 9 exp (�X 9 (C8 � C 9 )), (6)

where _ 9 2 R is the learnable degree to which the user’s behaviors
(e.g., click or conversion) on item 3 9 initially excite (when _ 9 > 0)
or discourage (when _ 9 < 0) that on item 38 ; and X 9 > 0 is the
learnable decay rate of the excitation or discouragement. In other
words, when studying 38 , as the time interval C8 � C 9 increases, its
behavioral relevance ⌘8 might both rise and fall (conditioned on the
e�ects from the intermediate items, i.e., {_ 9 }98 ), but eventually
approach its inherent relevance e⌘8 , as the in�uences from previous
behaviors on 3 9 will decay toward 0 at rate X 9 > 0. Here, C8 , C 9
are the behavior occurrence time in continuous space and can be
roughly approximated by 8 and 9 in discrete time space.

Note that Eq. (6) can be regarded as a conceptual formulation,
as it can not guarantee ⌘8 ,e⌘8 2 [0, 1]. We will later introduce our
HEROES unit design which implements Eq. (6) to the contextual
item feature modelling in Section 3.2.

Inter-Layer Behavior Modelling. As introduced above, for each
item 38 , there are two behavioral factors: the prior-click relevance
⌘28 representing how likely the user would click 38 after observing
it in the CTR layer, and the post-click relevance ⌘E8 representing
how likely the user would purchase 38 after clicking it in the CVR
layer. We explicitly model the correlations across these layers as
followings.

⌘E8 = q (⌘28 ), ⌘28+1 = k (⌘E8 ), (7)

2For simplicity, we use A8 to denote both A28 and A E8 ; and similar notations foreA8 , ⌘8 ,
5\ , I.

• In each layer, a user’s behavior on each item can be either excited or
discouraged by the user’s past behaviors.
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Figure: An illustrated
example of contextual
dependence: click occurs
when browsing interesting
items.

ℎ! ≔ 3ℎ!+;
$%!

𝜆! exp(−𝛿$(𝑡! − 𝑡$)) ,

where 𝜆! ∈ ℝ is the learnable degree to which the user’s behaviors
on 𝑑$ initially excite (when 𝜆! > 0) or discourage (when 𝜆! < 0), and
𝛿$ > 0 is the learnable decay rate of the excitation or
discouragement.



HEROES: Inter-Layer Mechanism
• We explicitly model the correlations across two layers as

ℎ!" = MLP 2ℎ!"; 𝜑 , ℎ!# = MLP 2ℎ!#; 𝜙

• Overall, the hierarchical architecture can be expressed as

ℎ!#, 2ℎ!# = 𝑓&
# ℎ!'(# ,Pℎ!'(# , ℎ!'(" ,Pℎ!'(" ; 𝒙)

ℎ!", 2ℎ!" = 𝑓&
"(ℎ!'(" ,Pℎ!'(" , ℎ!#, 2ℎ!#; 𝒙))HEROES CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Figure 4: An illustrated example of overall architecture (in the left part) and recurrent unit of HEROES (in the right part). Left: in the lower
layer (i.e., CTR layer) for engagement objective modeling, we model through the behavior path “observation!click”; while in the upper layer
(i.e., CVR layer) for satisfaction objective modeling, we model through the behavior path “click!conversion”. Right: in the upper part, we
incorporate the recurrent unit and the Hawkes process to form a HEROES unit, which can simultaneously model the inherent relevance and
behavioral relevance by mining the contextual item features and the user’s previous behaviors.

Inter-Layer Mechanism. i8 , o8 , g8 are designed to encode the top-
down contextual formation. Formally, for each item 38 , their values
are updated as follows:

f8 = sigmoid (MLP(s8 )), i8 = sigmoid (MLP(s8 )),
o8 = sigmoid (MLP(s8 )), g8 = tanh (MLP(s8 )),

(15)

where s8 is the top-down state, computed as
s28 = [(1 � 68�1) ·* 2

8�1 · ⌘28�1 + 68�1 ·* A
8�1 · ⌘E8�1],

sE8 = [* E
8�1 · ⌘E8�1 + 68 ·, A

8 · ⌘28 ] .
(16)

where* 2
8�1,*

A
8�1,*

E
8�1 and,

A
8 are trainable weights.

Note that the above operations in Eqs. (12), (14), (15), (16) im-
plicitly force the CVR layer to absorb the summary information
from the CTR layer according to the top-down contexts. Also, these
operations are not assigned with a �xed update intervals, and thus
can be adaptively adjusted corresponding to di�erent contexts.

3.3 Loss Function
Considering that both click and conversion signals are binary, we
adopt binary cross entropy (BCE) loss as

! = !2 + U · !E where (17)

!1 = �
’

(1,x@ )2D@

�
1 · log % (1 |x@) + (1 � 1) · log(1 � % (1 |x@))

�
,

(18)
where 1 can denote either click 2 or conversion E .

4 HEROES FOR UNBIASED LTR
In this section, we extend the HEROES architecture into unbiased
LTR (i.e., using Eq. (3)). We �rst describe how to use the HEROES
to model the user’s multiple behavior through the entire space
behavior path, and then present the corresponding loss function.

4.1 Behavior Modelling on the Entire Space
Note that the HEROES introduced in Section 3 that does not ex-
plicitly model the behavior path “observation!click”. However,
as stated in Section 2, unbiased LTR requires the HEROES to use
Eq. (3) and learn the multiple user behaviors through the entire
space behavior path “observation!click!conversion”.

To this end, we introduce the survival analysis technique [12, 23]
to simultaneously estimate the user’s observations, clicks, conver-
sions. The main assumption of the survival analysis technique is
that a patient will keep survival until she leaves the hospital or
meets death, which follows the path “survival!death”.

Analogously, we can use it to formulate the user’s multiple be-
haviors, which are similar but hierarchical: In the CTR layer, a user
will keep observing until she leaves due to the lost interest or clicks
an item to check its detailed information, which follows the path
“observation ! click”; where in the CVR layer, a user will keep
clicking to search for a worthwhile item until she leaves due to
mismatching between the user requirement and the current item or
purchases an item due to success in �nding a favorite item, which
follows the path “click! conversion”.

Based on the analysis above, we can de�ne the probability density
function (P.D.F.) of a user behavior occurring at 8-th item 38 as

% (28 = 1) = % (I2 = 8), % (E8 = 1) = % (IE = 8), (19)

where I2 and IE represent the click and conversion behaviors re-
spectively; and I = 8 means that the behavior occurs in 38 and I � 8
means that the behavior occurs after 38 .

From the analogy between “survival ! death” and “observation
! click”, “click ! conversion”, we can �nd that when studying
the click behavior I2 in the CTR layer, the CDF in this case (i.e.,
% (I2 � 8)) denotes the observation probability, since a user will
keep browsing until she �nds an interesting item and clicks to
check details. Similarly, if studying the conversion behavior IE in
the CVR layer, the CDF here (i.e., % (IE � 8)) denotes the click prob-
ability since a user will keep clicking the items until she eventually
purchases a favored one. Thus, we have

% (>8 = 1) = % (I2 � 8), % (28 = 1) = % (IE � 8) . (20)

We then can derive the prior-click relevance A28 and the post-click
relevance A E8 by the conditional click probability ⌘28 and the condi-
tional conversion probability ⌘E8 , which can be formulated as

⌘28 B % (A28 = 1) = % (28 = 1)
% (>8 = 1) =

% (I2 = 8)
% (I2 � 8) , (21)

⌘E8 B % (A E8 = 1) = % (E8 = 1)
% (28 = 1) =

% (IE = 8)
% (IE � 8) , (22)

Alibaba Group Shanghai Jiao Tong University

Figure: An illustrated example of HEROES architecture.



HEROES: Gate Mechanism

• To explicitly learn the gate status, we define 𝑔! as a boundary detector:

𝑔! = #1 if 𝑃 𝑐! = 1 > 0.5
0 otherwise

Alibaba Group Shanghai Jiao Tong University
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Figure 3: An illustrated example of the gate mechanism: 68 = 0
denotes no click at 38 where the contextual information is passed
via “observation!click” in the CTR layer; and 68 = 1 denotes a click
at 38 where the contextual information is summarized in the CTR
layer and is further passed via “click!conversion” in theCVR layer.

where q (·) andk (·) denote parameterized mapping functions, and
we will specify them in later Section 3.2. The intuition behind Eq. (7)
is straightforward: The former equation represents the case where
a user may click on an item because its abstract content (e.g., title) is
interesting (i.e.,⌘28 ) and purchase it after carefully checking whether
its detailed information (e.g., description) is relevant (i.e., ⌘E8 ). The
latter equation shows the case where a user �nds and purchases
a favored item (i.e., ⌘E8 ), and then it is likely for the user to stop
browsing and not click its following items (i.e, ⌘28+1).

According to Eq. (7), we introduce a hierarchical architecture,
whose formulation can be written as

⌘28 ,
e⌘28 = 5 2\ (⌘

2
8�1,⌘

E
8�1,e⌘28�1,e⌘E8�1; x@);

⌘E8 ,
e⌘E8 = 5 E\ (⌘28 ,⌘E8�1,e⌘28 ,e⌘E8�1; x@), (8)

where 5 2\ and 5 E\ are the recurrent functions in the CTR and CVR
layers that take the contextual information x@3 as the input, and
output ⌘28 , e⌘28 and ⌘E8 , e⌘E8 .
Gate Mechanism. Besides the aforementioned intra- and inter-
layer behavior modelling which are proposed to incorporate the
contextual information, we further introduce a gate mechanism to
explicitly discover the hidden structure. Speci�cally, the CTR layer
is expected to model the contextual information in each segment fol-
lowing the behavior path “observation!click” (i.e., starting at a user
observing an item and ending at the user clicking an item). Similarly,
the CVR layer is expected to model the contextual information in
each segment following the behavior path “click!conversion” (i.e.,
starting at a user clicking an item and ending at the user purchasing
an item).

To this end, we de�ne 68 as a boundary detector as

68 =
⇢1, if % (28 = 1) > 0.5
0. otherwise , (9)

We illustrate how68 in�uences the hierarchical structure in Figure 3:
If there is no click at 38 (i.e., 68 = 0), then the contextual information
of 38 should pass through the behavior path “observation!click”
in the CTR layer; otherwise (i.e., 68 = 1), the contextual information
of 38 should be summarized in the CTR layer and pass through the
behavior path “click!convsersion” in the CVR layer.

3For each recurrent unit for 8-th document 38 , we concatenate the one-hot embedding
vector of its position (i.e., 8) and its document feature (i.e., x8 ) as the input. Considering
that recurrent network will encode all the contextual information in query @ (i.e., ⇡@ ),
we use x@ for simplicity.

3.2 HEROES Unit
For each item 38 , HEROES unit models model inherent relevancee⌘8 and behavioral relevance ⌘8 in a recurrent fashion which incor-
porate the contexts both within (i.e., intra-layer) and across (i.e.,
inter-layer) the CTR and CVR layers.

Intra-Layer Mechanism. LeteB8 and B8 denote the unit states in
each cell which correspond to e⌘8 and ⌘8 . To achieve the gate mech-
anism in Figure 3, we �rst recursively compute the states in the
CTR layer as:

eB28 =

(ef28 �eB28�1 +ei28 �eg28 , h1i
ei28 �eg28 , h2i ; B

2
8 =

(
f28 � B2 (C8�1) + i28 � g28 , h1i

i28 � g28 , h2i
,

(10)
where � denotes element-wise product operation. h1ih2i respec-
tively denote the conditions: 68�1 = 0,68�1 = 1. Here, f8 (i.e., f28 , f

E
8 ,ef28 ,efE8 ); i8 (i.e., i28 , iE8 ,ei2 ,eiE ); o8 (i.e., o28 , oE8 eo28 ,eoE8 ) are forget, input, out-

put gates, and g8 (i.e., g28 , g
E
8 eg28 ,egE8 ) is a cell proposal vector, whose

calculations will be later introduced in Eq. (15).
We call the operation under h1i update, and it under h2i summa-

rize. When there is no click at 38�1, then there should the contextual
information from 38�1 passing to 38 , and thus update operation will
update the states at 38 . Otherwise (i.e., there is a click at 38�1), then
summarize operation will summarize the contextual information
in the current segment to update it in the CVR layer (see Eq. (13))
and reinitialize the state for the next segment.

In update operation, we introduce B2 (C) to formulate the Hawkes
process in Eq. (6) as

B2 (C) =eB28+1+(B28+1�eB28+1) exp (�X8+1 (C � C8 )) for C 2 (C8 , C8+1] . (11)

Here, X8+1 = 5W (MLP(~8+1 | |⌘28+1)) where ~8+1 is a multi-hot em-
bedding vector representing the user’s behavior on item 38+1, and
| | denotes the concatenation operation. If ~8+1 is not available in
some cases, we can directly apply X8+1 = 5W (MLP(⌘28+1)) instead.
Here, we follow [19] to de�ne 5W (G) as 5W (G) B W log(1+exp (G/W))
where W is set as 5 in our experiment.

Then, the hidden states e⌘28 and ⌘28 can calculated by

e⌘28 =eo28 � tanh(eB28 ), ⌘28 = o28 � tanh(B28 ). (12)

Similar as Eq. (10), the states in the CVR layer are recursively
updated following

eBE8 =

(efE8 �eBE8�1 +eiE8 �egE8 , h3i
BE8�1, h4i

; BE8 =

(
fE8 � BE8�1 + iE8 � gE8 , h3i

BE8�1, h4i
,

(13)
where h3ih4i respectively denote the conditions: 68 = 1,68 = 0.
We call the operation under h3i update, and it under h4i copy:
When there is a click at 38 , then there should be the contextual
information passed from the CTR layer, and thus update operation
will update the states at 38 . Otherwise (i.e., there is no click at 38 ),
then copy operation will simply copy the states and hidden states of
the previous timestep without fusing any information. The hidden
states e⌘E8 and ⌘E8 can be computed via

e⌘E8 =

(eoE8 � tanh(eBE8 ), h3ie⌘E8�1, h4i ; ⌘
E
8 =

(
oE8 � tanh(BE8 ), h3i

⌘E8�1, h4i
. (14)

Figure: An illustrated example of motivations of gate mechanism.
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2𝑠!# = S
3f!#⊙ 2𝑠!'(# + 3i!#⊙2g!#, UPDATE

3i!#⊙2g!#, SUMMARIZE
, 𝑠!# = `

f!#⊙ 𝑠#(𝑡!'() + i!#⊙g!# UPDATE
i!#⊙g!#, SUMMARIZE

• Let 0𝑠! and 𝑠! denote the unit states in each cell which correspond to 3ℎ! and ℎ!.
To achieve intra-layer mechanism, these states are recursively updated as

where ⊙ denotes element-wise product operation, UPDATE is 𝑔!'( = 0 and
SUMMARIZE is 𝑔!'( = 1. Here, f!, i!, o! are forget, input, output gates and g! is
a cell proposal vector which will be determinated by inter-layer mechanism.
𝑠#(𝑡!'() formulates the Hawkes process as

𝑠# 𝑡 = 2𝑠!*(# + 𝑠!*(# − 2𝑠!*(# exp −𝛿!*( 𝑡 − 𝑡! , for 𝑡 ∈ (𝑡!, 𝑡!*(]

where 𝛿!*( = 𝑓+ MLP ℎ!*(# and 𝑓+ 𝑥 ≔ 𝛾 log(1 + exp(𝑥/𝛾)), 𝛾 is set as 5.

• Then the hidden states 2ℎ!# and ℎ!# can be calculated as
2ℎ!# = 2o!#⊙ tanh 2𝑠!# , ℎ!# = o!#⊙ tanh(𝑠!#)
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2𝑠!" = `
3f!#⊙ 2𝑠!'(" + 3i!"⊙2g!", UPDATE

𝑠!'(" , COPY
, 𝑠!" = `

f!"⊙ 𝑠!'(" + i!"⊙g!", UPDATE
𝑠!'(" , COPY

where ⊙ denotes element-wise product operation, UPDATE is 𝑔! = 1 and
COPY is 𝑔! = 0. The hidden states 2ℎ!" and ℎ!" can be computed via

• Similarly, the states in the CVR layer are recursively updated following

2ℎ!" = S
2o!#⊙ tanh(2𝑠!") , UPDATE

Pℎ!'(" , COPY
, ℎ!" = `

o!"⊙ tanh(𝑠!") , UPDATE
ℎ!'(" , COPY



HEROES: Inter-Layer Mechanism
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f! = sigmoid MLP 𝑠! , i! = sigmoid MLP 𝑠! ,
o! = sigmoid MLP 𝑠! , g! = sigmoid MLP 𝑠! ,

• i!, o!, g! are designed to encode the top-down contextual information as

where 𝑠! is the top-down state, computed as
𝑠!# = 1 − 𝑔!'( ⋅ 𝑈!'(# ⋅ ℎ!'(# + 𝑔!'( ⋅ 𝑈!'(, ⋅ ℎ!'("

𝑠!" = [𝑈!'(" ⋅ ℎ!'(" + 𝑔! ⋅ 𝑊!
, ⋅ ℎ!#]

Here, HEROES forces the CVR layer to absorb the summary information
from the CTR layer according to the top-down contexts.



(Biased) Loss Function
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𝐿 = 𝐿# + 𝛼 ⋅ 𝐿" where

• Considering that both click and conversion signals are binary, we adopt
binary cross entropy (BCE) loss as

𝐿- = − ;
-,𝒙! ∈𝒟!

𝑏 ⋅ log 𝑃 𝑏 𝒙𝒒 + 1 − 𝑏 ⋅ log 1 − 𝑃 𝑏 𝒙) ),

where 𝑏 can denote either click 𝑐 or conversion 𝑣.



Modeling on Entire Space
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Figure 1: Top diagram shows the pipeline information systems,
which consists of a ranking system and the user multiple behaviors.
Bottom �gure illustrates the entire space behavior path “observa-
tion ! click ! conversion”.

Recent researches are mainly developed based on the existing
multi-task learning techniques [2] to simultaneously learn multiple
types of user behaviors, which can be roughly categorized into
two directions. One direction [18, 20, 30, 33] is to leverage the
behavior decomposition which constructs the user’s micro-actions
as auxiliary information to promote the CTR and CVR predictions.
Another line [17, 26, 34] is to design an e�ective feature sharing
strategy among the CTR and CVR prediction models.

However, when modelling the user’s multiple behaviors, almost
all the existing papers have not well used, even may not be aware
of, the following key characteristics of user behavior patterns:
• There exists contextual dependence among the multiple behaviors
in one list: a user’s behaviors on an itemmay a�ect her behaviors
on its following items. This in�uence would be either excitation
or discouragement. One example is that if a teen has purchased
a hat, she then might not be interested in other hats.

• Di�erent behavior paths trigger with multiple time scales. For
example, in Taobao e-commerce platform1, the average time
interval of clicks is 12.23, while that of purchases is 32.08, which
indicates that the behavior paths “observation! click” and “click
! conversion” happen with di�erent time scales.
An illustrated example of the above characteristics is provided

in Figure 2. To this end, we propose a novel framework called
Hierarchical rEcurrent Ranking On the Entire Space (HEROES) to
formulate the entire space user behavior path (i.e., “observation !
click! conversion”) in a multi-scale fashion. Concretely, as shown
in Figure 4(Left), HEROES establishes a hierarchical architecture:
the lower layer (i.e., CTR layer) estimates the engagement behaviors
(i.e., “observation! click”), while the upper layer (i.e., CVR layer)
estimates the satisfaction behaviors (i.e., “click! conversion”). We
tweak the design of gates in [3] and allocate them both within and
between two layers, which allows HEREOS to automatically learn
a suitable time scale for each layer. Besides the architecture, we
then incorporate the neural Hawkes process [19] into the recurrent
unit [3] to form a new unit (called HEROES unit, as shown in
Figure 4(Right)), which can not only encode the contextual item
features but also model the excitation or discouragement brought
from the user’s past behaviors. By applying HEROES units into

1https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408

the hierarchical architecture, HEROES is able to simultaneously
model all the top-down contextual contents (including the item
features and the user’s behaviors) and learn appropriate time scales
(as Figure 3 depicts) for the entire space behavior path “observation
! click ! conversion”.

Furthermore, we also show that HEROES can be seamlessly
applied to the unbiased learning-to-rank task by incorporating
with the survival analysis technique [12].

The major contributions of this paper can be outlined as follows.
• We propose a novel paradigm named HEROES, where we model
the multiple user behaviors on entire space (i.e., “observation!
click! conversion”) in a multi-scale manner.

• We design a novel recurrent unit to take both the contextual
items and the user’s previous behaviors into consideration.

• We show that our approach can be seamlessly used for unbiased
ranking by incorporating with survival analysis technique.

We conduct the comprehensive experiments on three industrial
datasets, whose results exhibit that our method can learn an e�ec-
tive ranker over multiple objectives. To our knowledge, this work
is the �rst work that simultaneously models the user’s multiple
behaviors in a multi-scale fashion.

2 PRELIMINARY
2.1 Learning-to-Rank with Multiple Objectives
The fundamental goal of learning-to-rank (LTR) scenarios is to
learn a ranker 5 , which assigns a score to the item according to its
feature. Then, the item list concerning a query @ is provided in the
descending order of their scores. Let D@ denote the set of items
associated with @, 38 denote the 8-th item in D@ and x8 denote the
feature vector of 38 . Let 18 represent the score of 38 . For simplicity,
we only consider the binary score here, i.e., 18 = 0 or 18 = 1. One
can easily extend it to the multi-level scores. We can describe the
risk function as

R(5 ) =
’
@

’
38 2D@

!(5 (x8 ),18 ), (1)

where 5 denotes a ranker, and !(5 (x8 ),18 ) denotes a loss function.
The goal of LTR is to �nd the optimal ranker 5 ⇤ that minimizes
the loss function. In the CTR prediction, the ranker is learned with
implicit feedbacks containing click labeled data (i.e., the score 18
of 38 in Eq. (1) is replaced by its click signal 28 ); while in the CVR
prediction, 18 of 38 in Eq. (1) is replaced by its conversion signal
E8 . Here E8 is a binary value that denotes whether the conversion
event occurs at 38 .

The goal in this paper is to jointly optimize the CTR and CVR
predictions. Formally, the input is D@ organized as a set of data
samples {(x, 2, E, � )}, where x is the item features, � is the length
of the item list, 2 is the click signal, and E is the conversion signal.
The output is the predictions of click and conversion probabilities
of each item 38 (i.e., % (28 = 1|x8 ) and % (E8 = 1|x8 )).

2.2 Relevance for Behavior Dependence
Note that the user’s multiple behaviors naturally have dependence
among each other (a.k.a., behavior path “observation ! click !
conversion”). Hence, instead of separately modelling the click and

Figure: Top diagram shows the pipeline
of information systems. Bottom figure
illustrates the entire space behavior path
“observation → click → conversion”.

• Note that the observation factor does not explicitly modelled in the
previous parts. In order to debias (recover the relevance from the
click by considering “observation → click”), we have

ℎ!# ≔ 𝑃 𝑟!# = 1 =
𝑃(𝑐! = 1)
𝑃(𝑜! = 1)

,

ℎ!" ≔ 𝑃 𝑟!" = 1 =
𝑃(𝑣! = 1)
𝑃(𝑐! = 1)
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Figure 2: Illustration of Deep Recurrent Survival Ranking model. Note that we mine click patterns in click case and observe
patterns in both click and non-click cases.

1|oi = 1;x) · P(oi = 1|x) , where we can de�ne relevance as

P(ri = 1|x) ⌘ P(ci = 1|oi = 1;x) = P(ci = 1|x)
P(oi = 1|x) . (3)

The task of biased learning-to-rank is to estimate click and return
a ranking list according to P(ci = 1|x), while the aim of unbiased
learning to rank is to derive relevance from click data and provide
a ranking list according to P(ri = 1|x).

Many click models [7, 10, 15] have investigated how to model
the impact from previous clicked document. To simplify, we only
study the session with single click here. One can easily extend
into multiple click session via truncating multiple one into several
single ones. Actually, this sequence truncation method, over the
sequential data with multiple events, has been widely used in many
works covering various �elds such as recommender system [19],
conversion attribution [31] and survival analysis [32], which trun-
cates the raw sequences according to the events of interest (i.e.,
click in our case).

4 METHODOLOGY
4.1 Survival Model
In the �eld of survival analysis [28, 32], we investigate the prob-
ability of death event z happening at each time. Analogously, we
here investigate the probability of click event z happening at each
document. Let z = i denote that event z happens at i-th document
di , and z � i denote that event z happens after i-th document di .
We then analyze the patient’s investigation on underlying survival
period, where a patient will keep ‘survival’ until she leaves hospital
or meets ‘death’. Actually, user behaviors on browsing are very
similar, where a user will keep observing until she leaves due to
lost of interest or clicks due to success in �nding a worthwhile
document. Hence, we �nd that click at each item corresponds to
the ‘death’ status of one patient [46], and de�ne click probability,
the probability density function (P.D.F.) of click occurring at i-th
document di , as

pi ⌘ P(ci = 1) ⌘ P(z = i), (4)

where z denotes the position of clicked document. Also, we see
that observe at each item corresponds to the ‘survival’ status of one
patent [46]. Hence, we can derive the observe probability at i-th
document di as the cumulative distribution function (C.D.F.), since

user will keep browsing until she �nds and clicks a favored one, as

S(i) ⌘ P(oi = 1) ⌘ P(z � i) =
’
� �i

P(z = � ), (5)

which represents the probability of the click event occurring after
document di , i.e., probability of observing di . Then it’s straight-
forward to de�ne the unobserve probability, i.e., the probability of
event occurring before the document di , as

W (i) ⌘ P(oi = 0) ⌘ P(z < i) =
’
� <i

P(z = � ). (6)

Hence, click probability function at the i-th document can be calcu-
lated as

pi = P(z = i) =W (i + 1) �W (i)
= [1 � S(i + 1)] � [1 � S(i)]
= S(i) � S(i + 1).

(7)

We de�ne the relevance probability as conditional click probability
according to Eq. (3), the click probability at document di given that
the previous document di�1 is observed, as

hi ⌘ P(ri = 1) = P(ci = 1)
P(oi = 1) =

P(z = i)
P(z � i) =

pi
S(i) , (8)

which also means the probability that the click occurring docu-
ment z lies at di given the condition that z is larger than the last
observation boundary.

For those non-click logs caused by user leave behavior, we as-
sume that user’s favored document (i.e., click) hides in the future
session. A similar scenario can be found in survival analysis when
a patient leaves hospital and �nally meets ‘death’ sometime after
investigation period. Hence, we can regard these non-click logs as
the censored clicked queries where censorship occurs in click. Note
that the data logs of unbiased learning-to-rank are represented as
a set of triple {(x , z, l)}, where x is the feature of the item and l is
the browse length. Here z is the position of clicked document dz if
the user clicks in this browsing behavior, but z is unknown (and we
marked z as null) in those non-click browsing histories. Di�erent
from traditional causality models [7, 9], survival model is able to
capture observe patterns in both click and non-click queries.

4.2 Deep Recurrent Survival Ranking Model
Based on survival model, we introduce our DRSR based on recurrent
neural network f� with the parameter � , which captures the sequen-
tial patterns for conditional click probability hi at every document

death probability survival probability

item list

time

Figure: Illustration of Deep Recurrent Survival Ranking Model. Note that we mine click
patterns in click case and observe patterns in both click and non-click cases.
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• click probability (death probability), the probability density function 
(P.D.F.) of  click occurring at 𝑖-th item

𝑝! = 𝑃 𝑐! = 1 = 𝑃(𝑧 = 𝑖)
• observe probability (survival probability), the cumulative distribution 

function (C.D.F.), since user will keep browsing until she finds and 
clicks a favored one

𝑆 𝑖 = 𝑃 𝑜! = 1 =;
34!

𝑃(𝑧 = 𝜏)

• relevance probability, the conditional click probability, the click 
probability at item given that the item is observed

click event 𝑧

Alibaba Group Shanghai Jiao Tong University

ℎ! = 𝑃 𝑟! = 1 =
𝑃 𝑐! = 1
𝑃 𝑜! = 1

=
𝑃 𝑧 = 𝑖
𝑃 𝑧 ≥ 𝑖

=
𝑝!
𝑆!



• relevance probability
ℎ! = 𝑃(𝑧 = 𝑖|𝑧 ≥ 𝑖, 𝑥; 𝜃) = 𝑓& (𝑥! |𝑏!'()

• click probability (death probability)
𝑝! = 1 − 𝑆 𝑖 + 1 − 1 − 𝑆 𝑖 = 𝑆 𝑖 − 𝑆 𝑖 + 1

𝑝! = 𝑃 𝑧 = 𝑖 𝑥; 𝜃 = ℎ! �
3:36!

(1 − ℎ3)

Figure 2: Illustration of Deep Recurrent Survival Ranking model. Note that we mine click patterns in click case and observe
patterns in both click and non-click cases.

1|oi = 1;x) · P(oi = 1|x) , where we can de�ne relevance as

P(ri = 1|x) ⌘ P(ci = 1|oi = 1;x) = P(ci = 1|x)
P(oi = 1|x) . (3)

The task of biased learning-to-rank is to estimate click and return
a ranking list according to P(ci = 1|x), while the aim of unbiased
learning to rank is to derive relevance from click data and provide
a ranking list according to P(ri = 1|x).

Many click models [7, 10, 15] have investigated how to model
the impact from previous clicked document. To simplify, we only
study the session with single click here. One can easily extend
into multiple click session via truncating multiple one into several
single ones. Actually, this sequence truncation method, over the
sequential data with multiple events, has been widely used in many
works covering various �elds such as recommender system [19],
conversion attribution [31] and survival analysis [32], which trun-
cates the raw sequences according to the events of interest (i.e.,
click in our case).

4 METHODOLOGY
4.1 Survival Model
In the �eld of survival analysis [28, 32], we investigate the prob-
ability of death event z happening at each time. Analogously, we
here investigate the probability of click event z happening at each
document. Let z = i denote that event z happens at i-th document
di , and z � i denote that event z happens after i-th document di .
We then analyze the patient’s investigation on underlying survival
period, where a patient will keep ‘survival’ until she leaves hospital
or meets ‘death’. Actually, user behaviors on browsing are very
similar, where a user will keep observing until she leaves due to
lost of interest or clicks due to success in �nding a worthwhile
document. Hence, we �nd that click at each item corresponds to
the ‘death’ status of one patient [46], and de�ne click probability,
the probability density function (P.D.F.) of click occurring at i-th
document di , as

pi ⌘ P(ci = 1) ⌘ P(z = i), (4)

where z denotes the position of clicked document. Also, we see
that observe at each item corresponds to the ‘survival’ status of one
patent [46]. Hence, we can derive the observe probability at i-th
document di as the cumulative distribution function (C.D.F.), since

user will keep browsing until she �nds and clicks a favored one, as

S(i) ⌘ P(oi = 1) ⌘ P(z � i) =
’
� �i

P(z = � ), (5)

which represents the probability of the click event occurring after
document di , i.e., probability of observing di . Then it’s straight-
forward to de�ne the unobserve probability, i.e., the probability of
event occurring before the document di , as

W (i) ⌘ P(oi = 0) ⌘ P(z < i) =
’
� <i

P(z = � ). (6)

Hence, click probability function at the i-th document can be calcu-
lated as

pi = P(z = i) =W (i + 1) �W (i)
= [1 � S(i + 1)] � [1 � S(i)]
= S(i) � S(i + 1).

(7)

We de�ne the relevance probability as conditional click probability
according to Eq. (3), the click probability at document di given that
the previous document di�1 is observed, as

hi ⌘ P(ri = 1) = P(ci = 1)
P(oi = 1) =

P(z = i)
P(z � i) =

pi
S(i) , (8)

which also means the probability that the click occurring docu-
ment z lies at di given the condition that z is larger than the last
observation boundary.

For those non-click logs caused by user leave behavior, we as-
sume that user’s favored document (i.e., click) hides in the future
session. A similar scenario can be found in survival analysis when
a patient leaves hospital and �nally meets ‘death’ sometime after
investigation period. Hence, we can regard these non-click logs as
the censored clicked queries where censorship occurs in click. Note
that the data logs of unbiased learning-to-rank are represented as
a set of triple {(x , z, l)}, where x is the feature of the item and l is
the browse length. Here z is the position of clicked document dz if
the user clicks in this browsing behavior, but z is unknown (and we
marked z as null) in those non-click browsing histories. Di�erent
from traditional causality models [7, 9], survival model is able to
capture observe patterns in both click and non-click queries.

4.2 Deep Recurrent Survival Ranking Model
Based on survival model, we introduce our DRSR based on recurrent
neural network f� with the parameter � , which captures the sequen-
tial patterns for conditional click probability hi at every document

HEROES: Unbiased Version

Alibaba Group Shanghai Jiao Tong University



Unbiased Loss Functions
• click probability (P.D.F.)

• aims to minimize negative log-likelihood of the click item 𝑑$ over
the clicked logs as

𝐿789:;(=) = −log �
?,= ∈𝒟"#$"%

𝑃 𝑧 = 𝑗 𝑥; 𝜃 = −log �
?,= ∈𝒟"#$"%

𝑝$

= − log �
?,= ∈𝒟"#$"%

ℎ$ �
3:36!

1 − ℎ3

= − ;
?,= ∈𝒟"#$"%

[log ℎ$ + ;
3:36!

log(1 − ℎ3)]

Alibaba Group Shanghai Jiao Tong University



Unbiased Loss Functions
• observe probability (C.D.F.)

• over the click cases

𝐿@A9@B = −log �
?,C ∈𝒟"#$"%

𝑃 𝑙 ≥ 𝑧 𝑥; 𝜃 ≈ − log ;
?,C ∈𝒟"#$"%

[1 − 𝑆(𝑙|𝑥; 𝜃)]

= − ;
?,C ∈𝒟"#$"%

log [1 − �
3:36C

(1 − ℎ3)]

• over the non-click cases

𝐿:8:'@A9@B = −log �
?,C ∈𝒟&'&("#$"%

𝑃 𝑧 > 𝑙 𝑥; 𝜃 ≈ − log ;
?,C ∈𝒟&'&("#$"%

𝑆(𝑙|𝑥; 𝜃)

= − ;
?,C ∈𝒟&'&("#$"%

;
3:36C

log(1 − ℎ3)

Alibaba Group Shanghai Jiao Tong University



Content
• Problem Background
• Multi-Scale User History
• Sequential Neural Networks

• Architecture
• HEROES for (Biased) Learning-to-Rank
• HEROES for Unbiased Learning-to-Rank

• Experiment
• (Biased) Learning-to-Rank
• Unbiased Learning-to-Rank

• Conclusion

Alibaba Group Shanghai Jiao Tong University



Experiment

Alibaba Group Shanghai Jiao Tong University

HEROES CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 2: Comparison of di�erent multi-task models and sequential models on three industrial datasets. Results of both Click-Through Rate
(CTR) andConversionRate (CVR) are reported. Bold values are the best in each column,while the second best values are underlined. * indicates
? < 0.001 in signi�cance tests compared to the best baseline.

Ranker Task Criteo Taobao E-Commerce Diantao Live Broadcast

AUC LogLoss NDCG AUC LogLoss NDCG AUC LogLoss NDCG

DUPN CVR 0.9505 0.1137 0.7348 0.6747 0.5194 0.6843 0.8232 0.2345 0.7522
CTR 0.7410 0.5863 0.7526 0.5777 0.7215 0.4576 0.7156 0.6032 0.7009

ESMM CVR 0.8750 0.4466 0.7194 0.6443 0.6330 0.6490 0.7046 0.2743 0.6697
CTR 0.6476 0.6511 0.7460 0.5410 0.7591 0.4166 0.6664 0.6577 0.6601

ESM2 CVR 0.8798 0.4360 0.7235 0.6453 0.6376 0.6471 0.7039 0.2756 0.6688
CTR 0.6740 0.6370 0.7496 0.5437 0.7573 0.4170 0.6742 0.6512 0.6608

MMoE CVR 0.8817 0.4420 0.7182 0.6537 0.6267 0.6452 0.7283 0.2731 0.6653
CTR 0.6779 0.6343 0.7540 0.5410 0.7463 0.4093 0.6770 0.6513 0.6618

DRSR CVR 0.9468 0.1366 0.7644 0.6723 0.5156 0.6892 0.8140 0.2546 0.7697
CTR 0.7452 0.5837 0.7687 0.5759 0.7171 0.4578 0.6985 0.6103 0.7053

RRN CVR 0.9564 0.1169 0.7739 0.6732 0.5061 0.6890 0.8156 0.2698 0.7421
CTR 0.7496 0.5797 0.7706 0.5766 0.7075 0.4575 0.6926 0.6019 0.6928

NARM CVR 0.9524 0.1172 0.7644 0.6733 0.5160 0.6893 0.8234 0.2595 0.7612
CTR 0.7511 0.5810 0.7724 0.5764 0.7186 0.4576 0.7082 0.5958 0.7012

STAMP CVR 0.9406 0.1209 0.8014 0.6668 0.5210 0.6892 0.8467 0.2465 0.7689
CTR 0.7391 0.5929 0.7702 0.5748 0.7235 0.4575 0.7123 0.5940 0.7070

Time-LSTM CVR 0.9622 0.1132 0.7979 0.6745 0.5169 0.6889 0.8540 0.2412 0.7787
CTR 0.7602 0.5703 0.7738 0.5776 0.7192 0.4576 0.7195 0.6040 0.7124

LSTM CVR 0.8429 0.4841 0.6629 0.6721 0.4783 0.6885 0.7124 0.2736 0.7475
CTR 0.6032 0.6042 0.7503 0.5749 0.7222 0.4493 0.6633 0.6542 0.6792

NHP CVR 0.9533 0.1127 0.7682 0.6743 0.4914 0.6893 0.8267 0.2535 0.7622
CTR 0.7428 0.5816 0.7656 0.5773 0.7214 0.4576 0.7033 0.6042 0.7068

HEROES�intra
CVR 0.8801 0.4270 0.7327 0.6917 0.5209 0.6998 0.8045 0.2675 0.7712
CTR 0.6764 0.6612 0.7521 0.5483 0.7174 0.4682 0.7091 0.5976 0.7135

HEROES�inter
CVR 0.9682 0.1152 0.7832 0.6932 0.4918 0.7082 0.8346 0.2225 0.7883
CTR 0.7632 0.5721 0.7882 0.5927 0.7032 0.4721 0.7138 0.6021 0.7123

HEROES�unit
CVR 0.9705 0.1016 0.8348 0.7402 0.4366 0.7106 0.8601 0.2350 0.7810
CTR 0.7787 0.5483 0.7832 0.5920 0.7084 0.4701 0.7412 0.5942 0.7111

HEROES CVR 0.9759⇤ 0.0975⇤ 0.8551⇤ 0.7503⇤ 0.3519⇤ 0.7137⇤ 0.8649⇤ 0.2203⇤ 0.7893⇤
CTR 0.7870⇤ 0.5400⇤ 0.7913⇤ 0.5953⇤ 0.7024⇤ 0.4727⇤ 0.7492⇤ 0.5893⇤ 0.7166⇤

Table 3: Comparison of unbiased LTR and biased LTR version of
HEROES under click generation model PBM.

Ranker Task Taobao E-Commerce (PBM)

AUC LogLoss NDCG

Relevance Data (HEROES) CVR 0.7503 0.3519 0.7137
CTR 0.5953 0.7024 0.4727

HEROES+ CVR 0.7442 0.3674 0.7064
CTR 0.5735 0.7206 0.4567

HEROES+comb
CVR 0.7463 0.3638 0.7110
CTR 0.5738 0.7202 0.4521

Click Data (HEROES) CVR 0.7412 0.3746 0.7024
CTR 0.5643 0.7563 0.4284

• Criteo dataset4 is formed of Criteo live tra�c data in a period
of 30 days. It consists of more than 5.5 million impressions with

4https://ailab.criteo.com/ressources/

2.3 million clicks and 438 thousand conversions. Since the query
signal is not available, following [22], we incorporate the user ID
and conversion ID to divide the full dataset into several sequential
data. In this way, we can obtain 2.2 million item lists (i.e., queries).

• Taobao E-Commerce dataset5 is collected from the tra�c logs
of Taobao’s recommender system. It contains the logs of 444 thou-
sand users browsing 85million items under 1,614 thousand queries.
In these queries, there are sequential user behaviors, including
3,317 thousand click labels and 17 thousand conversion signals.

• Diantao LiveBroadcastRecommendation dataset is collected
from the user interaction logs of Diantao App which shares the
same database of users and anchors with Taobao App. It contains
more than 44 million logs of 905 thousand users’ browsing histo-
ries over 527 thousand items in 9,305 thousand queries. Features
of the user include age, gender, city, etc., and features of the docu-
ment include title, time, etc. In each query, we regard the items

5https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408
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STAMP CVR 0.9406 0.1209 0.8014 0.6668 0.5210 0.6892 0.8467 0.2465 0.7689
CTR 0.7391 0.5929 0.7702 0.5748 0.7235 0.4575 0.7123 0.5940 0.7070

Time-LSTM CVR 0.9622 0.1132 0.7979 0.6745 0.5169 0.6889 0.8540 0.2412 0.7787
CTR 0.7602 0.5703 0.7738 0.5776 0.7192 0.4576 0.7195 0.6040 0.7124

LSTM CVR 0.8429 0.4841 0.6629 0.6721 0.4783 0.6885 0.7124 0.2736 0.7475
CTR 0.6032 0.6042 0.7503 0.5749 0.7222 0.4493 0.6633 0.6542 0.6792

NHP CVR 0.9533 0.1127 0.7682 0.6743 0.4914 0.6893 0.8267 0.2535 0.7622
CTR 0.7428 0.5816 0.7656 0.5773 0.7214 0.4576 0.7033 0.6042 0.7068

HEROES�intra
CVR 0.8801 0.4270 0.7327 0.6917 0.5209 0.6998 0.8045 0.2675 0.7712
CTR 0.6764 0.6612 0.7521 0.5483 0.7174 0.4682 0.7091 0.5976 0.7135

HEROES�inter
CVR 0.9682 0.1152 0.7832 0.6932 0.4918 0.7082 0.8346 0.2225 0.7883
CTR 0.7632 0.5721 0.7882 0.5927 0.7032 0.4721 0.7138 0.6021 0.7123

HEROES�unit
CVR 0.9705 0.1016 0.8348 0.7402 0.4366 0.7106 0.8601 0.2350 0.7810
CTR 0.7787 0.5483 0.7832 0.5920 0.7084 0.4701 0.7412 0.5942 0.7111

HEROES CVR 0.9759⇤ 0.0975⇤ 0.8551⇤ 0.7503⇤ 0.3519⇤ 0.7137⇤ 0.8649⇤ 0.2203⇤ 0.7893⇤
CTR 0.7870⇤ 0.5400⇤ 0.7913⇤ 0.5953⇤ 0.7024⇤ 0.4727⇤ 0.7492⇤ 0.5893⇤ 0.7166⇤

Table 3: Comparison of unbiased LTR and biased LTR version of
HEROES under click generation model PBM.

Ranker Task Taobao E-Commerce (PBM)

AUC LogLoss NDCG

Relevance Data (HEROES) CVR 0.7503 0.3519 0.7137
CTR 0.5953 0.7024 0.4727

HEROES+ CVR 0.7442 0.3674 0.7064
CTR 0.5735 0.7206 0.4567

HEROES+comb
CVR 0.7463 0.3638 0.7110
CTR 0.5738 0.7202 0.4521

Click Data (HEROES) CVR 0.7412 0.3746 0.7024
CTR 0.5643 0.7563 0.4284

• Criteo dataset4 is formed of Criteo live tra�c data in a period
of 30 days. It consists of more than 5.5 million impressions with

4https://ailab.criteo.com/ressources/

2.3 million clicks and 438 thousand conversions. Since the query
signal is not available, following [22], we incorporate the user ID
and conversion ID to divide the full dataset into several sequential
data. In this way, we can obtain 2.2 million item lists (i.e., queries).

• Taobao E-Commerce dataset5 is collected from the tra�c logs
of Taobao’s recommender system. It contains the logs of 444 thou-
sand users browsing 85million items under 1,614 thousand queries.
In these queries, there are sequential user behaviors, including
3,317 thousand click labels and 17 thousand conversion signals.

• Diantao LiveBroadcastRecommendation dataset is collected
from the user interaction logs of Diantao App which shares the
same database of users and anchors with Taobao App. It contains
more than 44 million logs of 905 thousand users’ browsing histo-
ries over 527 thousand items in 9,305 thousand queries. Features
of the user include age, gender, city, etc., and features of the docu-
ment include title, time, etc. In each query, we regard the items

5https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408
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Figure 5: (a) Performance change of HEROES against the ratio of CVR and CTR loss weights. (b) Performance change of HEROES against
click data with di�erent amounts of training data. (c) Training/inference time comparisons of HEROES against the sequential models.

of an item only depends on its position, which can be formulated
as % (>8 ) = dg8 , where d8 represents position bias at position 8 and
g 2 [0, +1] is a parameter controlling the degree of position bias.
The position bias d8 is obtained from an eye-tracking experiment
in [13] and the parameter g is set as one by default. It also assumes
that a user decides to click a item 38 according to the probability
% (28 ) = % (>8 ) · % (A8 ). Since there is no typical investigation of the
position bias on the behavior path “click!conversion”, we simply
operate on the conversion signals by assigning E = 0 for those
items with no click (i.e., 2 = 0) and keep the original values for
those clicked items. We regard the initial lists as the relevance
data (i.e., unbiased data) and generated lists as the click data (i.e.,
biased data). As Table 3 shows, our unbiased version, denoted as
HEROES+, outperforms the biased one, denoted as HEROES, which
shows that HEROES+ can mitigate the position bias. HEROES+
and HEROES+comb achieve comparable results, which indicates that
incorporating the Hawkes process into the survival analysis process
would not cause much di�erence.

Visualization Analysis. Here, we investigate whether the perfor-
mance gain of HEROES+ indeed owes to the reduction of position
bias. We compare the ranking list given by the debiased ranker
against the initial ranker. Speci�cally, we �rst identify the items
at each position given by the initial ranker. Then we calculate the
average positions of the items at each original position after re-
ranking. We also calculate their average positions after re-ranking
their relevance labels, which is regarded as the ground truth. Ideally,
the average positions produced by the debiasing methods should
be close to the average position by relevance labels. We summarize
the results in Figure 6(a). The curve of HEROES+ (in red with “⌅”)
is the closest to the relevance label curve (in purple with mark
‘•’), indicating that the performance enhancement of HEROES+ is
indeed due to e�ective debiasing.

Robustness Analysis. We evaluate the robustness of HEROES+
under di�erent degrees of position bias. In the above experiments,
we only test the performance of HEROES+ with click data gen-
erated from click models with a given degree of position bias,
i.e., g = 1 in Taobao E-Commerce (PBM). Therefore, we set the
hyper-parameters for each click generation model to �ve values
and examine whether HEROES+ is still equally e�ective. Figure 6(b)
shows the AUC results as the degree of position bias increases; the
results in terms of other measures follow similar trends.
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Figure 6: (a) Average position after re-ranking of the item at each
original position. (b) Performance change ofHEROES+ against click
data with di�erent degrees of position bias.

6 RELATEDWORK
There are mainly two directions of existing works on behavior
awareness and multi-task information systems. One line of the
research [18, 20, 29, 30, 32, 33] is to investigate the behavior de-
composition to learn and estimate multiple types of the user be-
haviors over all the samples. The other direction of the research
[4, 5, 7, 8, 17, 21, 25, 26, 34, 34] aims to explicitly learn the task
relationship and design an e�ective feature sharing technique. For
instance, However, all the above previous literature do not explicitly
capture, or even are not aware of, the natural multi-scale character-
istics of the user’s multiple behaviors. Instead, our work establishes
a hierarchical architecture which can incorporate the contextual
information to automatically �nd a speci�c time scale for each
behavior path (i.e., “observation!click”, “click!conversion”).

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a paradigm named HEROES, which can
automatically discover the user’s multi-scale browsing patterns
to model the user’s engagement and satisfaction behaviors. We
further show that HEROES learn over the entire space behavior
path “observation!click!conversion”, and can be extended to
unbiased LTR task. It would be interesting to investigate modelling
more complex user behaviors (e.g., adding the items into the wish
list or cart) in future work.
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To evaluate the performance of HEROES
under unbiased setting, we introduce a
position-based simulation, where clicks
are generated according to

𝑃 𝑐! = 𝑃 𝑜! ⋅ 𝑃(𝑟!)

where 𝑃 𝑜! = 𝜌!" and 𝜌! is obtaining
from an eye-tracking experiment and 𝜏
is set as 1.



Conclusion

Alibaba Group Shanghai Jiao Tong University

• Our main insight is to model the multiple user behaviors on the entire
space (i.e., “observation → click → conversion”) in a multi-scale manner.

• To achieve this, we design a novel recurrent unit to take both the
contextual items and the user’s previous behaviors into consideration.

• We show that our approach can be seamlessly used for unbiased
ranking by incorporating with survival analysis technique.
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