Multi-Scale User Behavior Network for Entire Space Multi-Task Learning

Jiarui Jin¹, Xianyu Chen¹, Weinan Zhang¹, Yuanbo Chen², Zaifan Jiang², Zekun Zhu², Zhewen Su², Yong Yu¹

¹Shanghai Jiao Tong University, ²Alibaba Group

Shanghai Jiao Tong University

Slides: https://jinjiarui.github.io/files/cikm22_oral.pdf

Content

- Problem Background
 - Multi-Scale User History
 - Sequential Neural Networks
- Architecture
 - HEROES for (Biased) Learning-to-Rank
 - HEROES for Unbiased Learning-to-Rank
- Experiment
 - (Biased) Learning-to-Rank
 - Unbiased Learning-to-Rank
- Conclusion

Content

Problem Background

- Multi-Scale User History
- Sequential Neural Networks
- Architecture
 - HEROES for (Biased) Learning-to-Rank
 - HEROES for Unbiased Learning-to-Rank
- Experiment
 - (biased) Learning-to-Rank
 - Unbiased Learning-to-Rank
- Conclusion

Multi-Scale User History

Users are likely to follow behaviour path "observation → click → conversion", where CTR prediction covers "observation → click" and CVR prediction covers "click → conversion".

browse and find a worthwhile one to click

Figure: An illustrated example of users' multi-scale behavior pattern: the lower layer (i.e., CTR layer) models the engagement objective through "observation \rightarrow click"; while the upper layer (i.e., CVR layer) models the satisfaction objective through "click \rightarrow conversion".

Sequential Neural Networks in IR

- Classical sequential recommender systems mainly focus on capturing relative orders of items, where recurrent neural networks (e.g., LSTM) are widely adopted for user history modelling (e.g., Click-Through Rate prediction).
- We argue that this paradigm would be limited by ignoring (i) multiple behaviors: a user's behaviors vary and have strong correlations; (ii) multiple scales: a user's behavior paths occur with different frequency.

Figure: An illustrated example of modelling sequential user history via a plain recurrent neural network.

EL Alibaba Group

Content

- Problem Background
 - Multi-Scale User History
 - Sequential Neural Networks
- Architecture
 - HEROES for (Biased) Learning-to-Rank
 - HEROES for Unbiased Learning-to-Rank
- Experiment
 - (Biased) Learning-to-Rank
 - Unbiased Learning-to-Rank
- Conclusion

HEROES: Intra-Layer Mechanism

- In order to model the mutual influence among multiple behaviors, we begin by introducing the definition of the inherent relevance. For each item d_i, we define r_i as inherent relevance (i.e., r^v_i to motivate purchase and r^c_i to motivate click) that are solely determinated by the item features and are free of the effect from all the external factors such as the contextual items and the user's past behaviors.
- In the contrast, we call r_i behavioral relevance which are affected by the external factors. To estimate r_i and r_i for each item d_i, we further introduce h_i and h_i which are defined as

$$\widetilde{h_i^c} \coloneqq P(\widetilde{r_i^c} = 1), \widetilde{h_i^v} \coloneqq P(\widetilde{r_i^v} = 1)$$
$$h_i^c \coloneqq P(r_i^c = 1), h_i^v \coloneqq P(r_i^v = 1)$$

HEROES: Intra-Layer Mechanism

• In each layer, a user's behavior on each item can be either excited or discouraged by the user's past behaviors.

observation probability gradually decreases with user's attention dropping

observation probability increases when browsing interesting ones

____ observation probability rapidly decreases when finding a favored one

recurrent unit

Figure: An illustrated example of contextual dependence: click occurs when browsing interesting items.

$$h_i \coloneqq \widetilde{h_i} + \sum_{j \le i} \lambda_i \exp(-\delta_j (t_i - t_j)),$$

where $\lambda_i \in \mathbb{R}$ is the learnable degree to which the user's behaviors on d_j initially excite (when $\lambda_i > 0$) or discourage (when $\lambda_i < 0$), and $\delta_j > 0$ is the learnable decay rate of the excitation or discouragement.

Alibaba Group

Shanghai Jiao Tong University

HEROES: Inter-Layer Mechanism

• We explicitly model the correlations across two layers as

$$h_i^{v} = \text{MLP}(\widetilde{h_i^{v}}; \varphi), h_i^{c} = \text{MLP}(\widetilde{h_i^{c}}; \phi)$$

• Overall, the hierarchical architecture can be expressed as

$$h_i^c, \widetilde{h_i^c} = f_\theta^c \left(h_{i-1}^c, \widetilde{h_{i-1}^c}, \frac{h_{i-1}^v}{h_{i-1}^v}, \widetilde{h_{i-1}^v}; \mathbf{x}_q \right)$$
$$h_i^v, \widetilde{h_i^v} = f_\theta^v \left(h_{i-1}^v, \widetilde{h_{i-1}^v}, h_i^c, \widetilde{h_i^c}; \mathbf{x}_q \right)$$

Figure: An illustrated example of HEROES architecture.

Alibaba Group

HEROES: Gate Mechanism

browse and find an interesting item to click

Figure: An illustrated example of motivations of gate mechanism.

• To explicitly learn the gate status, we define g_i as a boundary detector:

$$g_i = \begin{cases} 1 & \text{if } P(c_i = 1) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

HEROES: Intra-Layer Mechanism

• Let \tilde{s}_i and s_i denote the unit states in each cell which correspond to \tilde{h}_i and h_i . To achieve intra-layer mechanism, these states are recursively updated as

$$\widetilde{s_i^c} = \begin{cases} \widetilde{f_i^c} \odot \widetilde{s_{i-1}^c} + \widetilde{i_i^c} \odot \widetilde{g_i^c}, & \text{UPDATE} \\ \widetilde{i_i^c} \odot \widetilde{g_i^c}, & \text{SUMMARIZE} \end{cases}, s_i^c = \begin{cases} f_i^c \odot s^c(t_{i-1}) + \widetilde{i_i^c} \odot g_i^c & \text{UPDATE} \\ \widetilde{i_i^c} \odot g_i^c, & \text{SUMMARIZE} \end{cases}$$

where \odot denotes element-wise product operation, UPDATE is $g_{i-1} = 0$ and SUMMARIZE is $g_{i-1} = 1$. Here, f_i , i_i , o_i are forget, input, output gates and g_i is a cell proposal vector which will be determinated by inter-layer mechanism. $s^c(t_{i-1})$ formulates the Hawkes process as

$$s^{c}(t) = \widetilde{s_{i+1}^{c}} + \left(s_{i+1}^{c} - \widetilde{s_{i+1}^{c}}\right) \exp\left(-\delta_{i+1}(t-t_{i})\right), \text{ for } t \in (t_{i}, t_{i+1}]$$

where $\delta_{i+1} = f_{\gamma}\left(\text{MLP}(h_{i+1}^{c})\right)$ and $f_{\gamma}(x) \coloneqq \gamma \log(1 + \exp(x/\gamma)), \gamma$ is set as 5.

• Then the hidden states \tilde{h}_i^c and h_i^c can be calculated as

 $\widetilde{h_i^c} = \widetilde{o_i^c} \odot \tanh(\widetilde{s_i^c}), \quad h_i^c = o_i^c \odot \tanh(s_i^c)$

Shanghai Jiao Tong University

HEROES: Intra-Layer Mechanism

• Similarly, the states in the CVR layer are recursively updated following

$$\widetilde{s_{i}^{\nu}} = \begin{cases} \widetilde{f_{i}^{c}} \odot \widetilde{s_{i-1}^{\nu}} + \widetilde{i_{i}^{\nu}} \odot \widetilde{g_{i}^{\nu}}, & \text{UPDATE} \\ s_{i-1}^{\nu}, & \text{COPY} \end{cases}, s_{i}^{\nu} = \begin{cases} f_{i}^{\nu} \odot s_{i-1}^{\nu} + i_{i}^{\nu} \odot g_{i}^{\nu}, & \text{UPDATE} \\ s_{i-1}^{\nu}, & \text{COPY} \end{cases}$$
where \odot denotes element-wise product operation, UPDATE is $g_{i} = 1$ and COPY is $g_{i} = 0$. The hidden states $\widetilde{h_{i}^{\nu}}$ and h_{i}^{ν} can be computed via
$$\widetilde{h_{i}^{\nu}} = \begin{cases} \widetilde{o_{i}^{c}} \odot \tanh(\widetilde{s_{i}^{\nu}}), & \text{UPDATE} \\ \widetilde{h_{i-1}^{\nu}}, & \text{COPY} \end{cases}, h_{i}^{\nu} = \begin{cases} o_{i}^{\nu} \odot \tanh(s_{i}^{\nu}), & \text{UPDATE} \\ h_{i-1}^{\nu}, & \text{COPY} \end{cases}$$

HEROES: Inter-Layer Mechanism

• i_i , o_i , g_i are designed to encode the top-down contextual information as

$$f_{i} = \operatorname{sigmoid}(\operatorname{MLP}(s_{i})), i_{i} = \operatorname{sigmoid}(\operatorname{MLP}(s_{i})), o_{i} = \operatorname{sigmoid}(\operatorname{MLP}(s_{i})), g_{i} = \operatorname{sigmoid}(\operatorname{MLP}(s_{i})), d_{i} = \operatorname{sigm$$

where s_i is the top-down state, computed as

$$s_{i}^{c} = [(1 - g_{i-1}) \cdot U_{i-1}^{c} \cdot h_{i-1}^{c} + g_{i-1} \cdot U_{i-1}^{r} \cdot h_{i-1}^{\nu}]$$
$$s_{i}^{\nu} = [U_{i-1}^{\nu} \cdot h_{i-1}^{\nu} + g_{i} \cdot W_{i}^{r} \cdot h_{i}^{c}]$$

Here, HEROES forces the CVR layer to absorb the summary information from the CTR layer according to the top-down contexts.

(Biased) Loss Function

• Considering that both click and conversion signals are binary, we adopt binary cross entropy (BCE) loss as

$$L = L_c + \alpha \cdot L_v$$
 where

$$L_b = -\sum_{(b,x_q)\in\mathcal{D}_q} (b \cdot \log P(b|x_q)) + (1-b) \cdot \log (1-P(b|x_q))),$$

where *b* can denote either click *c* or conversion *v*.

Modeling on Entire Space

Figure: Top diagram shows the pipeline of information systems. Bottom figure illustrates the entire space behavior path "observation \rightarrow click \rightarrow conversion".

 Note that the observation factor does not explicitly modelled in the previous parts. In order to debias (recover the relevance from the click by considering "observation → click"), we have

$$h_{i}^{c} \coloneqq P(r_{i}^{c} = 1) = \frac{P(c_{i} = 1)}{P(o_{i} = 1)},$$
$$h_{i}^{v} \coloneqq P(r_{i}^{v} = 1) = \frac{P(v_{i} = 1)}{P(c_{i} = 1)}$$

HEROES: Unbiased Version

item list

Figure: Illustration of Deep Recurrent Survival Ranking Model. Note that we mine click patterns in click case and observe patterns in both click and non-click cases.

y

Shanghai Jiao Tong University

HEROES: Unbiased Version

click event z

• click probability (death probability), the probability density function (P.D.F.) of click occurring at *i*-th item

$$p_i = P(c_i = 1) = P(z = i)$$

• observe probability (survival probability), the cumulative distribution function (C.D.F.), since user will keep browsing until she finds and clicks a favored one

$$S(i) = P(o_i = 1) = \sum_{\tau \ge i} P(z = \tau)$$

• relevance probability, the conditional click probability, the click probability at item given that the item is observed

$$h_i = P(r_i = 1) = \frac{P(c_i = 1)}{P(o_i = 1)} = \frac{P(z = i)}{P(z \ge i)} = \frac{p_i}{S_i}$$

HEROES: Unbiased Version

• relevance probability

$$h_i = P(z = i | z \ge i, x; \theta) = f_\theta(x_i | b_{i-1})$$

click probability (death probability)

$$p_i = [1 - S(i+1)] - [1 - S(i)] = S(i) - S(i+1)$$
$$p_i = P(z = i | x; \theta) = h_i \prod_{\tau: \tau < i} (1 - h_{\tau})$$

Unbiased Loss Functions

- click probability (P.D.F.)
 - aims to minimize negative log-likelihood of the click item d_j over the clicked logs as

$$\begin{split} L_{\text{point}(z)} &= -\log \prod_{(x,z) \in \mathcal{D}_{\text{click}}} P(z=j|x;\theta) = -\log \prod_{(x,z) \in \mathcal{D}_{\text{click}}} p_j \\ &= -\log \prod_{(x,z) \in \mathcal{D}_{\text{click}}} \left[h_j \prod_{\tau:\tau < i} (1-h_{\tau}) \right] \\ &= -\sum_{(x,z) \in \mathcal{D}_{\text{click}}} \left[\log h_j + \sum_{\tau:\tau < i} \log(1-h_{\tau}) \right] \end{split}$$

Unbiased Loss Functions

- observe probability (C.D.F.)
 - over the click cases

$$\begin{split} L_{\text{click}} &= -\log \prod_{(x,l) \in \mathcal{D}_{\text{click}}} P(l \ge z | x; \theta) \approx -\log \sum_{(x,l) \in \mathcal{D}_{\text{click}}} [1 - S(l | x; \theta)] \\ &= -\sum_{(x,l) \in \mathcal{D}_{\text{click}}} \log \left[1 - \prod_{\tau: \tau < l} (1 - h_{\tau}) \right] \end{split}$$

• over the non-click cases

Alibaba Group

$$\begin{split} L_{\text{non-click}} &= -\log \prod_{\substack{(x,l) \in \mathcal{D}_{\text{non-click}}} P(z > l | x; \theta) \approx -\log \sum_{\substack{(x,l) \in \mathcal{D}_{\text{non-click}}} S(l | x; \theta) \\ &= -\sum_{\substack{(x,l) \in \mathcal{D}_{\text{non-click}}} \sum_{\tau: \tau < l} \log(1 - h_{\tau}) \end{split}$$

Shanghai Jiao Tong University

Content

- Problem Background
 - Multi-Scale User History
 - Sequential Neural Networks
- Architecture
 - HEROES for (Biased) Learning-to-Rank
 - HEROES for Unbiased Learning-to-Rank
- Experiment
 - (Biased) Learning-to-Rank
 - Unbiased Learning-to-Rank
- Conclusion

Experiment

Table 2: Comparison of different multi-task models and sequential models on three industrial datasets. Results of both Click-Through Rate (CTR) and Conversion Rate (CVR) are reported. Bold values are the best in each column, while the second best values are underlined. * indicates p < 0.001 in significance tests compared to the best baseline.

Ranker	Task	Criteo			Taobao E-Commerce			Diantao Live Broadcast		
Maniter	TUSK	AUC	LogLoss	NDCG	AUC	LogLoss	NDCG	AUC	LogLoss	NDCG
DUDN	CVR	0.9505	0.1137	0.7348	0.6747	0.5194	0.6843	0.8232	0.2345	0.7522
DUPN	CTR	0.7410	0.5863	0.7526	0.5777	0.7215	0.4576	0.7156	0.6032	0.7009
ESMM	CVR	0.8750	0.4466	0.7194	0.6443	0.6330	0.6490	0.7046	0.2743	0.6697
	CTR	0.6476	0.6511	0.7460	0.5410	0.7591	0.4166	0.6664	0.6577	0.6601
ESM ²	CVR	0.8798	0.4360	0.7235	0.6453	0.6376	0.6471	0.7039	0.2756	0.6688
	CTR	0.6740	0.6370	0.7496	0.5437	0.7573	0.4170	0.6742	0.6512	0.6608
ММоЕ	CVR	0.8817	0.4420	0.7182	0.6537	0.6267	0.6452	0.7283	0.2731	0.6653
	CTR	0.6779	0.6343	0.7540	0.5410	0.7463	0.4093	0.6770	0.6513	0.6618
DRSR	CVR	0.9468	0.1366	0.7644	0.6723	0.5156	0.6892	0.8140	0.2546	0.7697
DK3K	CTR	0.7452	0.5837	0.7687	0.5759	0.7171	0.4578	0.6985	0.6103	0.7053
RRN	CVR	0.9564	0.1169	0.7739	0.6732	0.5061	0.6890	0.8156	0.2698	0.7421
	CTR	0.7496	0.5797	0.7706	0.5766	0.7075	0.4575	0.6926	0.6019	0.6928
NARM	CVR	0.9524	0.1172	0.7644	0.6733	0.5160	0.6893	0.8234	0.2595	0.7612
	CTR	0.7511	0.5810	0.7724	0.5764	0.7186	0.4576	0.7082	0.5958	0.7012
STAMP	CVR	0.9406	0.1209	0.8014	0.6668	0.5210	0.6892	0.8467	0.2465	0.7689
	CTR	0.7391	0.5929	0.7702	0.5748	0.7235	0.4575	0.7123	0.5940	0.7070
Time-LSTM	CVR	0.9622	0.1132	0.7979	0.6745	0.5169	0.6889	0.8540	0.2412	0.7787
	CTR	0.7602	0.5703	0.7738	0.5776	0.7192	0.4576	0.7195	0.6040	0.7124
LSTM	CVR	0.8429	0.4841	0.6629	0.6721	0.4783	0.6885	0.7124	0.2736	0.7475
	CTR	0.6032	0.6042	0.7503	0.5749	0.7222	0.4493	0.6633	0.6542	0.6792
NHP	CVR	0.9533	0.1127	0.7682	0.6743	0.4914	0.6893	0.8267	0.2535	0.7622
	CTR	0.7428	0.5816	0.7656	0.5773	0.7214	0.4576	0.7033	0.6042	0.7068
HEROES ⁻ intra	CVR	0.8801	0.4270	0.7327	0.6917	0.5209	0.6998	0.8045	0.2675	0.7712
	CTR	0.6764	0.6612	0.7521	0.5483	0.7174	0.4682	0.7091	0.5976	0.7135
HEROES ⁻ inter	CVR	0.9682	0.1152	0.7832	0.6932	0.4918	0.7082	0.8346	0.2225	0.7883
	CTR	0.7632	0.5721	0.7882	0.5927	0.7032	0.4721	0.7138	0.6021	0.7123
HEROES_unit	CVR	0.9705	0.1016	0.8348	0.7402	0.4366	0.7106	0.8601	0.2350	0.7810
	CTR	0.7787	0.5483	0.7832	0.5920	0.7084	0.4701	0.7412	0.5942	0.7111
HEROES	CVR	0.9759*	0.0975*	0.8551*	0.7503*	0.3519*	0.7137*	0.8649*	0.2203*	0.7893*
	CTR	0.7870^{*}	0.5400^{*}	0.7913 *	0.5953*	0.7024^{*}	0.4727^{*}	0.7492^{*}	0.5893*	0.7166^{*}

Shanghai Jiao Tong University

Experiment

Table 3: Comparison of unbiased LTR and biased LTR version ofHEROES under click generation model PBM.

Ranker	Task	Taobao E-Commerce (PBM)				
	Tubit	AUC	LogLoss	NDCG		
Relevance Data (HEROES)	CVR	0.7503	0.3519	0.7137		
	CTR	0.5953	0.7024	0.4727		
HEROES ⁺	CVR	0.7442	0.3674	0.7064		
	CTR	0.5735	0.7206	0.4567		
HEROES ⁺ comb	CVR	0.7463	0.3638	0.7110		
	CTR	0.5738	0.7202	0.4521		
Click Data (HEROES)	CVR	0.7412	0.3746	0.7024		
	CTR	0.5643	0.7563	0.4284		

To evaluate the performance of HEROES under unbiased setting, we introduce a position-based simulation, where clicks are generated according to $P(c_i) = P(o_i) \cdot P(r_i)$

where $P(o_i) = \rho_i^{\tau}$ and ρ_i is obtaining from an eye-tracking experiment and τ is set as 1.

Figure 6: (a) Average position after re-ranking of the item at each original position. (b) Performance change of HEROES⁺ against click data with different degrees of position bias.

Conclusion

- Our main insight is to model the multiple user behaviors on the entire space (i.e., "observation → click → conversion") in a multi-scale manner.
- To achieve this, we design a novel recurrent unit to take both the contextual items and the user's previous behaviors into consideration.
- We show that our approach can be seamlessly used for unbiased ranking by incorporating with survival analysis technique.

Thanks for Your Listening