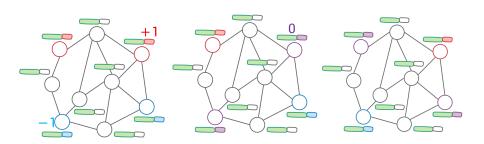
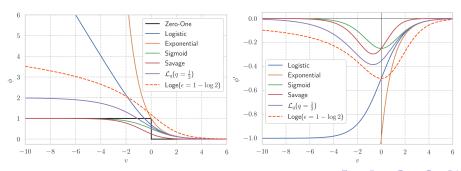
Bag of Tricks for Node Classification with Graph Neural Networks


Yangkun Wang¹, Jiarui Jin¹, Weinan Zhang¹, Yong Yu¹, Zheng Zhang², David Wipf²

> ¹Shanghai Jiao Tong University ²Amazon

1/5


Label Usage

Randomly split the training set into several parts (usually two). Take some training node labels as model input and predict the remaining ones.

Robust Loss Function for Classification

Loss	$\rho(z)$	$\rho(\phi_{logit}(v))$
Logistic	ż	$\log(1 + \exp(-v))$
Exponential	$\exp(z) - 1$	$\exp(-v)$
Sigmoid	$1 - \exp(-z)$	$\frac{1}{1 + \exp(v)}$
Savage	$(1-\exp(-z))^2$	$\frac{1}{(1 + \exp(v))^2}$
\mathcal{L}_q	$\frac{1}{q}(1-\exp(-qz))$	$\frac{1}{q}\left(1 - \frac{1}{(1 + \exp(-v))^q}\right)$
Loge	$\log(\epsilon + z) - \log \epsilon$	$\log(\epsilon + \log(1 + \exp(-v))) - \log \epsilon$

Tweaking the GAT Architecture

GAT with symmetric normalized adjacency matrix

Let $\mathbf{A}_{att} = \mathbf{D}\alpha$, with α being the attention matrix,

$$oldsymbol{X}^{(l+1)} = \sigma \left(oldsymbol{ ilde{D}}^{-rac{1}{2}} oldsymbol{ ilde{A}}_{att} oldsymbol{ ilde{D}}^{-rac{1}{2}} oldsymbol{X}^{(l)} oldsymbol{W}_0^{(l)} + oldsymbol{X}^{(l)} oldsymbol{W}_1^{(l)}
ight),$$

where $\tilde{\boldsymbol{A}}_{2tt} = \boldsymbol{I} + \boldsymbol{A}_{2tt}$.

Non-interactive attention

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\boldsymbol{a}^{T}\boldsymbol{x}_{j}\right)\right)}{\sum_{r \in \mathcal{N}(v_{i})} \exp\left(\text{LeakyReLU}\left(\boldsymbol{a}^{T}\boldsymbol{x}_{r}\right)\right)}$$

Attention involving edge features

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\boldsymbol{a}^{T}[\boldsymbol{x}_{i}^{V} \parallel \boldsymbol{x}_{j}^{V} \parallel \boldsymbol{x}_{ij}^{E}]\right)\right)}{\sum_{r \in \mathcal{N}(v_{i})} \exp\left(\text{LeakyReLU}\left(\boldsymbol{a}^{T}[\boldsymbol{x}_{i}^{V} \parallel \boldsymbol{x}_{r}^{V} \parallel \boldsymbol{x}_{ij}^{E}]\right)\right)}$$

Thank you

Full Paper Link: https://arxiv.org/abs/2103.13355

Thank you

Full Paper Link: https://arxiv.org/abs/2103.13355

Thanks for listening!