
Inductive Relation Prediction Using Analogy Subgraph Embeddings
Jiarui Jin1, Yangkun Wang1, Kounianhua Du1, Weinan Zhang1, Quan Gan2, Zheng Zhang2 , Yong Yu1,

David Wipf2

1Shanghai Jiao Tong University, 2Amazon

0.0 Background

0.1 Logics & Graph patterns

1.3 Pros of Our Model
•Our model combines the expressive power of graph

neural networks and logical rules.
•Our model breaks the limitation of modelling neighbor

connectivity of graph neural networks.
• Each graph pattern explicitly represents a specific

logical rule, which contributes to an inductive bias that
facilitates generalization to unseen relation types and
leads to more explainable predictive models.

1.2 Encoding Algorithms

2.0 Experiments

If you have any question, please feel free to contact Jiarui Jin (jinjiarui97@gmail.com)

1.0 Our Model (GraphANGEL)
• Knowledge graph is a special heterogeneous graph.
• A set of facts are represented as triples (head entity,

relation, tail entity).

Published as a conference paper at ICLR 2022

Figure 2: Illustration of GraphANGEL’s relation prediction workflow, where different edge colors in the graph G
represent different relation types, and dashed edges in G represent the triplet hs, r, ti we wish to predict. The left
box shows the patterns considered in our implementation, where black edges mean matching edges irrespective
of relation types. The bottom boxes show the logical function of the three patterns.

in London (some of them construct certain patterns are called tree-like logic rules (Yang & Song,
2019) or graph-like rules (Shi et al., 2020)).

The second intuition tells us that we can predict whether Person E lives in London by checking
if the subgraphs containing the pair (Person E, London) (named target subgraphs, e.g. Person E
- Arsenal - London) are similar to the subgraphs containing a live relation (named supporting

subgraphs, e.g. Person I - Chelsea - London). Similarity computation is done by a neural
network. To determine whether the two sets of subgraphs are similar, we additionally compare the
target subgraphs against another set of subgraphs that do not contain the relation (named refuting

subgraphs, e.g. Person E - Person G - Barcelona) as a baseline. A variety of options exist for
selecting the refuting subgraphs, ranging from selecting those having the same topology regardless of
the actual relation types, to those having both the same shape and relation types.

In addition, we do not include the edge of live in the supporting subgraphs to avoid information
leakage. We also require the supporting subgraphs and refuting subgraphs to have the same shape as
that of the target subgraphs in order to make similarity computation focus more on the node features
and relation types rather than the topology, and that is why we call both supporting subgraphs and
refuting subgraphs analogy subgraphs. This enables us to predict live relation with the pipeline
above without learning an explicit embedding for live relation, unlike prior works. The reason is
that the information of live relation can be implicitly expressed by the other relations found in the
supporting and refuting subgraphs, e.g. live can be expressed by watch and based. This serves
as the basis for our model’s generalizability to relations that have no occurrence in the training set.

We can describe what kind of subgraphs we are looking for in the above example with logical
expressions. The target subgraphs above will have the logical expression Source(x) ^ Target(y) ^
Edge(x, z) ^ Edge(z, y), where Source(x) means if node x is the source node s, Target(y) means
if node y is the target node t, and Edge(x, z) means if there exists an edge regardless of relation
type between x and z. Our task is to determine whether an edge of relation type r exists between
s and t. The supporting subgraphs will have Edge(x, z) ^ Edge(z, y) ^ Edger(x, y), meaning that
the subgraph can be any 3-cycle except that there must be an edge with relation type r. The refuting
subgraphs will have Edge(x, z) ^ Edge(z, y) ^ ¬Edger(x, y), meaning that it can be any 2-path
except that the starting node and ending node must not have an edge with relation r in between. This
leads to the concept of graph patterns, defined as follows:

Definition 1 (Graph Pattern). A graph pattern is a logical function that takes in a subgraph as input

and returns a boolean value, consisting of logical operators (¬,^,_) as well as indicator operators

determined by the existence of nodes and edges, the latter includes:

• Source(x) and Target(x), returning true iff x is the source node and target node, respectively.

• Edge(x, y), returning true iff there exists an edge between node x and y.

• Edger(x, y), returning true iff there exists an edge of relation r between node x and y.

We call a subgraph S matches a graph pattern ⇧ if true is returned when S is applied to ⇧. Such
operation is already well supported in graph databases (Francis et al., 2018), and in the following
sections we give more efficient algorithms that perform matching with simple patterns.

3

• Inference: Mona Lisa is in Louvre AND Louvre is
located in Paris →Mona Lisa is in Paris （which
constructs a triangle in graph）.

• A relation can often be inferred from other relations
with a combination of simple logical rules that do not
involve too many nodes.

• This intuitions enable us to only use the simple graph
patterns such as pairs, triangles and quadrangles.

Complex Graph Pattern Combinations of Simple Graph Patterns

• One can predict relation existence by finding whether
the subgraphs containing the pair are similar to the
(analogy) subgraphs containing an edge with the same
relation.

• It allows us to break the limitations of the current graph
neural network mainly focusing on the neighborhood
information.

Subgraph(s) of Target Pattern

Subgraphs of
Supporting

Pattern

Subgraphs of
Refuting
Pattern

? r

r

r

r

r

Figure: Overview of GraphANGEL (ANalogy subGraph Embedding Learning)
where different edge colors in the graph represent different relation types, and
dashed edge in graph represent the triplet we wish to predict. The left box shows
the patterns considered in our implementation, where black edges mean matching
edges irrespective of relation types. The bottom boxes show the logical function of
the three patterns.

1.1 Search and Retrieval Module

Published as a conference paper at ICLR 2022

Theorem 1. (Time Complexity of Retrieval and Sampling) Given a graph G = (V, E) and a graph

pattern ⇧3�cycle in 3-cycle and a graph pattern ⇧4�cycle in 4-cycle, the time complexity of retrieving

all the (supporting) subgraphs satisfying ⇧3�cycle is O(|E| 32), of retrieving all the (supporting) sub-

graphs satisfying ⇧4�cycle is O(max(|E| 32 , N4�cycle)) where N4�cycle is the number of quadratic

cycles in G and also the trivial lower bound of the time complexity. For uniform sampling algorithms,

the time complexity of sampling n4�cycle supporting cases of ⇧4�cycle is O(|E| 32 + n4�cycle). As

there are usually more refuting cases than supporting ones, the time complexity of sampling n refuting

cases of ⇧3�cycle or ⇧4�cycle is O(|V|+ |E|+ n).

In the following subsections, we show the proof of Theorem 1 by providing the pseudocode of retrieval
and sampling algorithms along with the correctness proof and complexity analysis in Appendix A2.1
and A2.2 respectively.

A2.1 PSEUDOCODE, CORRECTNESS PROOFS, AND COMPLEXITY ANALYSIS FOR 3-CYCLE
AND 4-CYCLE PATTERN RETRIEVAL

In this part, we first provide two algorithms for searching and retrieving supporting subgraphs
following the graph patterns in 3-cycle (i.e., ⇧3�cycle) in Part 1; and one algorithm for searching and
retrieving supporting subgraphs following the graph patterns in 4-cycle (i.e., ⇧4�cycle) in Part 2.

Part 1. In Algorithm 2, we present the pseduocode for searching and retrieving all the supporting
subgraphs following the pattern ⇧3�cycle. The input is a graph G = (V, E) and the output is a set B
containing all the supporting subgraphs satisfying ⇧3�cycle. We denote the degree of node u by du,
and the set of neighbor nodes of node u in graph G by NG(u).

Algorithm 2: Search and Retrieval Algorithm A for ⇧3�cycle

V1 {u|du > |E| 12 }, V2 {u|du |E| 12 }
B {}
foreach u 2 V1 do

foreach v 2 V1 do
foreach w 2 V1 do

if hu, vi 2 E and hu,wi 2 E and hv, wi 2 E then
B B [{(u, v, w)}

end
end

end
end
foreach u 2 V2 do

foreach v 2 NG(u) do
foreach w 2 NG(u) do

if hv, wi 2 E then
B B [{(u, v, w)}

end
end

end
end

Now, we investigate the correctness and the time complexity of Algorithm 2.

Proof. For any 3-cycle (i.e., 3 nodes connected by 3 edges) (u, v, w), if the degrees of all three
nodes are greater than |E| 12 (i.e., du > |E| 12 and dv > |E| 12 and dw > |E| 12), it will be enumerated
in the first loop. Otherwise, if the degree of any node is not greater than |E| 12 , the 3-cycle will be
enumerated in the second loop.

In order to analyze the time complexity, we first investigate an upper bound of V1 = {u|du > |E| 12 }:

2|E| =
X

u2V
du �

X

u2V1

du >

X

u2V1

|E| 12) |V1| < 2|E| 12 . (4)

15

Published as a conference paper at ICLR 2022

For the first main loop of the algorithm, we have
X

u,v,w2V1

1 = |V1|3 < 8|E| 32 = O(|E| 32). (5)

For the second main loop, we have
X

u2V2

X

hu,vi2E

X

hu,vi2E

1 =
X

u2V2

d
2
u

X

u2V2

|E| 12 du 2|E| 32 = O(|E| 32). (6)

Summarizing the analysis above, we conclude that the overall time complexity is O(|E| 32).

Alternatively, we provide another searching and retrieving algorithm for all the supporting subgraphs
following ⇧3�cycle in Algorithm 3. The inputs and outputs of the algorithm are consistent with
Algorithm 2.

Algorithm 3: Search and Retrieval Algorithm B for ⇧3�cycle

B {}
foreach u 2 V do

foreach v 2 NG(u) where dv du do
foreach w 2 NG(v) where dw dv do

if hv, wi 2 E then
B B [{(u, v, w)}

end
end

end
end

Next, we analyze and prove the correctness and the time complexity of Algorithm 3.

Proof. It is not difficult to find that each 3-cycle (u, v, w) satisfying du � dv � dw is enumerated.

To analyze the time complexity, let us consider how many ws are enumerated:
X

u2V

X

hu,vi2E
dvdu

X

hw,vi2E
dwdv

1
X

u2V

X

hu,vi2E
dvdu

X

hw,vi2E

1 =
X

u2V

X

hu,vi2E
dvdu

dv. (7)

From Eq. (4), we know that for each v satisfying dv > |E| 12 , since du � dv > |E| 12 , there are at most
2|E| 12 different us in the outer loop. Hence, we have

X

u2V

X

hu,vi2E
dvdu

dv =
X

v2V
dv

X

hu,vi2E
dvdu

1

=
X

v2V

⇣h
dv |E| 12

i
+
h
dv > |E| 12

i⌘
dv

X

hu,vi2E
dvdu

1

=
X

v2V

0

B@
h
dv |E| 12

i
dv

X

hu,vi2E
dvdu

1 +
h
dv > |E| 12

i
dv

X

hu,vi2E
dvdu

1

1

CA

X

v2V

⇣h
dv |E| 12

i
|E| 12 dv +

h
dv > |E| 12

i
|E| 12 dv

⌘

=|E| 12
X

v2V
dv = 2|E| 32 ,

(8)

where [·] represents the boolean indicator function (i.e., [x] = 1 if x is true; otherwise false).

Therefore, the overall time complexity is also O(|E| 32).

16

Published as a conference paper at ICLR 2022

Part 2. In Algorithm 4, we demonstrate the algorithm for searching and retrieving all the supporting
subgraphs following graph patterns in 4-cycles (i.e., ⇧4�cycle). The inputs, outputs, and notations
are similar to those in Algorithm 2.

Algorithm 4: Search and Retrieval Algorithm for ⇧4�cycle

B {}
foreach u 2 V do

Tx {} for each x 2 V
foreach v 2 NG(u) where dv du do

foreach w 2 NG(v) where dw du do
foreach x 2 Tw do

B B [{(u, v, w, x)}
end
Tw Tw [{v}

end
end

end

We provide the correctness and the time complexity of Algorithm 4 as follows.

Proof. For correctness, we can see from the algorithm that every 4-cycle (u, v, w, x) satisfying
du � max(dv, dw, dx) is enumerated.

For time complexity, let N4�cycle denote the number of quadratic cycles in G. We first have the time
complexity ⇥(N4�cycle) of the innermost loop. For the outer three loops, let us consider how many
ws are enumerated:

X

u

X

hu,vi2E
dudv

X

hw,vi2E
dwdu

1
X

u

X

hu,vi2E
dudv

X

hw,vi2E

1 =
X

u

X

hu,vi2E
dudv

dv. (9)

From Eq. (8), we have X

u

X

hu,vi2E, dudv

dv 2|E| 32 . (10)

Thus, the overall time complexity is O(max(|E| 32 , N4�cycle)).

A2.2 PSEUDOCODE, CORRECTNESS PROOFS, AND COMPLEXITY ANALYSIS FOR 3-CYCLE
AND 4-CYCLE PATTERN SAMPLING

From the subsection above, we know that given a graph G = (V, E), we have different algorithmic
complexities depending on the graph pattern ⇧. For ⇧3�cycle (i.e., 3-cycles), the time complexity of
retrieving all supporting subgraphs is O(|E| 32). For ⇧4�cycle (i.e., 4-cycles), the time complexity is
O(max(|E| 32 , N4�cycle)), where N4�cycle is the number of quadratic cycles in G.

However, for large-scale graphs, it is impractical to retrieve all quadratic-cycle graph patterns since
N4�cycle could be too large. In addition, the number of refuting cases for both ⇧3�cycle and ⇧4�cycle

may also be large. These problems may lead to the high computational cost of these search algorithms.
Realizing this, we further introduce the technique of uniform sampling to keep the time complexity
within an acceptable level.

Therefore, in the following, we first provide one algorithm for uniformly sampling and retrieving
graph patterns following ⇧+

4�cycle in Part 1; and two algorithms for uniform sampling and retrieving
graph patterns following the refuting patterns in 3-cycle shape (i.e., ⇧�

3�cycle) and 4-cycle shape
(i.e., ⇧�

4�cycle) in Part 2. As a reminder, while practical, another approach to obtain graph patterns
following ⇧�

3�cycle and ⇧�
4�cycle is random walk, although random walk is often not efficient enough.

Part 1. We present the algorithm for sampling and retrieving all the supporting subgraphs following
⇧4�cycle in Algorithm 5. The inputs to the algorithm are a graph G = (V, E) and n4�cycle, rep-

17

User B User C

City A

Institute B

?

MESSAGE PASSING:

𝑚!
"#$ = #

%∈𝒩(!)
𝑀"(ℎ!" , ℎ%" , 𝑒!%)

ℎ!"#$ = 𝑈"(ℎ!" , 𝑚!
"#$)

𝑀" is message function and 𝑈" is vertex
update function, hidden states ℎ!" at each
node in the graph are updated based on
messages 𝑚!

"#$.

𝑦 = 𝑅 {ℎ!%|𝑣 ∈ 𝐺}

The message function𝑀" , vertex update function 𝑈", and readout
function 𝑅 are all learned differentiable function.

READOUT:

Published as a conference paper at ICLR 2022

Table 2: Patterns ⇧p considered in our experiments.
Task Pair 3-cycle (with type) 4-cycle (with type)

Knowledge Graph Completion true Edge(x, z) ^ Edge(z, y) Edge(x, z) ^ Edge(z, w) ^ Edge(w, y)
Heterogeneous Graph Recommendation true Edgea(x, z) ^ Edgeb(z, y) Edgea(x, z) ^ Edgeb(z, w) ^ Edgec(w, y)

• Supporting patterns. Matching supporting patterns reduces to finding a subgraph containing an
edge of type r in the precomputed result. One can efficiently retrieve with a precomputed inverted
map with relation r as key and the actual subgraphs containing it as value.

• Refuting patterns. Matching refuting patterns reduces to random walks, followed by checking
whether the starting node and the ending node has an edge of type r.

We further design a series of novel uniform sampling algorithms such that the time complexity
of sampling n refuting cases of ⇧3�cycle or ⇧4�cycle reduces to O(|V| + |E| + n). See detailed
descriptions in Appendix A2.

Representation Computation. We apply a neural network �(·) over each subgraph S⇤
p,k, S+

p,q and
S�
p,q to obtain graph-level representations e⇤p,k, e+p,q , e�p,q , following

e
⇤
p,k = �

�
S⇤
p,k

�
, e

+
p,q = �

�
S+
p,q

�
, e

�
p,q = �

�
S�
p,q

�
. (1)

In the implementation, we adopt single layer R-GCN (Schlichtkrull et al., 2018) followed by any
readout function, e.g., Mean(·), Max(·) as �(·). We also empirically study the effect of using other
GNNs with different number of propagation layers as �(·) in Appendix A6.5.

Similarity Computation. We deploy a neural network (·) to measure the similarity s
+ between

the set of subgraphs matching ⇧⇤
1, . . . ,⇧

⇤
P and the set of subgraphs matching ⇧+

1 , . . . ,⇧
+
P ; and the

similarity s
� between the set of subgraphs matching ⇧⇤

1, . . . ,⇧
⇤
P and the set of subgraphs matching

⇧�
1 , . . . ,⇧

�
P , which can be formulated as

s
+ =

�
{e⇤p,k, p = 1, . . . , P ; k = 1, . . . ,K}, {e+p,q : p = 1, . . . , P ; q = 1, . . . , Q}

�
,

s
� =

�
{e⇤p,k : p = 1, . . . , P ; k = 1, . . . ,K}, {e�p,q : p = 1, . . . , P ; q = 1, . . . , Q}

�
.

(2)

There are many choices of measuring the similarity between two sets. In the implementation, we
adopt a co-attention mechanism (Lu et al., 2016) as (·), because even within the same pattern, the
subgraphs having similar node features are more important than others.

We put the concrete formulation of �(·) and (·) in the Appendix A3.3 and A3.4.

Loss Function. For each tuple hs, r, ti, we have the binary label y in the training dataset D to denote
the relation existence. We here train the model by logistic loss with negative sampling:

L = �
X

hs,r,ti2D

(y log ŷ + (1� y) log(1� ŷ)) , (3)

where ŷ is the final prediction calculated with normalized similarity as ŷ = s+

s++s� .

Inference. We perform pattern matching to find the target, supporting, and refuting subgraphs on the
testing graph, and compute the prediction score ŷ exactly as what we do in training. We predict that
an edge exists if ŷ is larger than a threshold (as a hyper-parameter, 0.5 in our implementation).

Limitations. There are two main limitations of GraphANGEL. The first one is that GraphANGEL
would not work reliably if the assumptions (intuitions) in Section 2 are violated. Examples include
when node s and t are disconnected or topologically far away when hs, r, ti is removed, so that
one may not be able to find 3-cycle or 4-cycle target subgraphs. The prediction in this case can
only rely on Pair patterns, i.e., comparing if the source-target pair is similar to the incident nodes of
edges with relation r or not. The second one is that current online subgraph sampling algorithms
are slow. To make sampling efficient, the subgraph retrieval stage requires finding and storing all
3-cycles and 4-cycles (See Appendix A3.1 for the space complexity analysis). For static graphs, it is
a one-time preprocessing step, although the results can be stored on external storage. We also provide
the incremental searching and retrieving algorithms to address the dynamic graphs in the real-world
scenario in Appendix A3.2. See further discussions on these limitations in Appendix A4.1.

5

Published as a conference paper at ICLR 2022

Table 3: Result comparisons with baselines on heterogeneous graph recommendation task.

Models LastFM Yelp Amazon Douban Book

AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1

HetGNN 0.7936 0.7258 0.7177 0.9083 0.8297 0.8205 0.7744 0.7108 0.7109 0.8737 0.7912 0.7915
HAN 0.8915 0.8337 0.8296 0.9156 0.8488 0.8426 0.8487 0.7682 0.7572 0.9244 0.8501 0.8458

TAHIN 0.8910 0.8463 0.8337 0.9067 0.8490 0.8393 0.8535 0.7718 0.7644 0.9253 0.8497 0.8373
HGT 0.8394 0.7939 0.7882 0.9006 0.8375 0.8334 0.7125 0.6482 0.6296 0.9132 0.8364 0.8222

R-GCN 0.8526 0.8393 0.8341 0.9098 0.8427 0.8323 0.8130 0.7408 0.7366 0.9203 0.8413 0.8271

GraphANGEL3�cycle 0.8934 0.8519 0.8465 0.9167 0.8498 0.8514 0.8601 0.7746 0.7746 0.9256 0.8512 0.8479
GraphANGEL4�cycle 0.8961 0.8514 0.8467 0.9201 0.8506 0.8521 0.8609 0.7752 0.7716 0.9242 0.8502 0.8378

GraphANGEL 0.8979 0.8524 0.8469 0.9231 0.8512 0.8533 0.8611 0.7790 0.7753 0.9311 0.8601 0.8543
GraphANGEL⇤ 0.9001 0.8611 0.8589 0.9337 0.8701 0.8577 0.8700 0.7810 0.7813 0.9410 0.8640 0.8591

4 EXPERIMENT

4.1 EXPERIMENT SETUP AND COMPARED ALGORITHMS

Recommendation on Heterogeneous Graph. We evaluate our model on four heterogeneous graph
benchmark datasets in various fields: LastFM (Hu et al., 2018a), Yelp (Hu et al., 2018b), Amazon (Ni
et al., 2019), and Douban Book (Zheng et al., 2017). The baselines we compare against are: HetGNN
(Zhang et al., 2019a), HAN (Wang et al., 2019b), TAHIN (Bi et al., 2020), HGT (Hu et al., 2020),
and R-GCN (Schlichtkrull et al., 2018). As the recommendation task can naturally be regarded as
the relation predictions between each user and item pair, for each triplet, we formulate the task as a
binary classification task. We split each dataset into 60%, 20%, and 20% for training, validation and
test sets, respectively. Following the setting of (Zhang et al., 2019a), we generate an equal number of
negative triplets with the same relation type in the test set, and report Area Under ROC Curve (AUC),
Accuracy (ACC), and F1 score. More details of the datasets and experimental configurations as well
as the implementation details for baselines are reported in Appendix A5.

Knowledge Graph Completion. We compare different methods on two benchmark datasets: FB15k-
237 (Toutanova & Chen, 2015) and WN18RR (Dettmers et al., 2018), which are constructed from
Freebase (Bollacker et al., 2008) and WordNet (Miller, 1995), respectively. The baselines we compare
against are: MLN (Singla & Domingos, 2005), TransE (Bordes et al., 2013), ConvE (Dettmers et al.,
2018), ComplEx (Trouillon et al., 2016), pLogicNet (Qu & Tang, 2019), RotatE (Sun et al., 2019a),
RNNLogic (Qu et al., 2020), ComplEx-N3 (Lacroix et al., 2018), GraIL (Teru et al., 2020) and QuatE
(Zhang et al., 2019b). For each triplet, we mask the source or target node, and let each method predict
the masked node. We use the filtered setting during evaluation on the standard training-validation-test
split, randomly break ties for triplets with the same score (Sun et al., 2019b) and report Mean Rank
(MR), Mean Reciprocal Rank (MRR), and Hit@K (K=1,3,10).

In each task, we implement GraphANGEL as we proposed in Section 3. Concretely, we imply
GraphANGEL with ⇧p upon the logical patterns shown in Table 2. For further investigations on
the influence of different graph patterns, we here introduce GraphANGEL3�cycle, a variant of
GraphANGEL without using patterns in 3-cycle shapes; and GraphANGEL4�cycle, another variant
without using patterns in 4-cycle shapes. For recommendation tasks on heterogeneous graphs, since
the number of edge types is usually small, we can enumerate all the relation type combination in each
pattern. This allows us to make the pattern ⇧p specific to relation types. We denote this variant as
GraphANGEL⇤. As the main advantage of our model is that it can generalize to relation types unseen
during training without fine-tuning, we both evaluate the overall performance of GraphANGEL
in standard relation prediction tasks and its generalizability to unseen relation types against other
state-of-the-art methods. We exam the robustness of GraphANGEL by adding the Gaussian noise
into the heterogeneous graphs and report the results in Appendix A6.5. We also compare the training
and inference time of GraphANGEL against baseline models and report results in Appendix A6.7.

4.2 RESULT ANALYSIS OF STANDARD TASKS

Heterogeneous Graph Based Recommendation. In recommendation scenarios, edges between
user and item nodes are generally more likely to exist if they share neighboring users or items.
In other words, users close in the graph may share similar interests and items close usually share
similar attributes. Table 3 summarizes the performances of GraphANGEL and baselines on four
different kinds of recommendation tasks. We observe that GraphANGEL significantly outperforms
the baselines across all datasets in terms of AUC, ACC, and F1 metrics. Almost all prevailing baseline
methods on heterogeneous graph are based on sampling through metapath. One explanation is that

6

Published as a conference paper at ICLR 2022

Table 4: Result comparisons with baselines on knowledge graph completion task.

Models FB15k-237 WN18RR

MR MRR Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10

pLogicNet 173 0.332 0.237 0.367 0.524 3408 0.441 0.398 0.446 0.537
TransE 181 0.326 0.229 0.363 0.521 3410 0.223 0.235 0.401 0.531
ConvE 244 0.325 0.237 0.356 0.501 4187 0.430 0.400 0.440 0.520

ComplEx 339 0.247 0.158 0.275 0.428 5261 0.440 0.410 0.460 0.510
MLN 1980 0.098 0.067 0.103 0.160 11549 0.259 0.191 0.322 0.361

RotatE 177 0.338 0.241 0.375 0.533 3340 0.476 0.428 0.492 0.571
RNNLogic 232 0.344 0.252 0.380 0.530 4615 0.483 0.446 0.497 0.558

ComplEx-N3 159 0.370 0.272 0.400 0.561 3452 0.491 0.440 0.500 0.581
GraIL 205 0.322 0.223 0.361 0.520 3539 0.401 0.352 0.438 0.501
QuatE 87 0.348 0.248 0.382 0.550 2314 0.488 0.438 0.508 0.582

GraphANGEL3�cycle 159 0.366 0.270 0.398 0.560 2919 0.492 0.463 0.497 0.590
GraphANGEL4�cycle 165 0.351 0.239 0.381 0.548 2914 0.493 0.465 0.502 0.587

GraphANGEL 151 0.374 0.275 0.408 0.564 2834 0.504 0.470 0.515 0.598
±3 ±0.003 ±0.002 ±0.004 ±0.004 ±25 ±0.003 ±0.002 ±0.004 ±0.004

given a specific pattern, these metapaths can be roughly regarded as target patterns, but without
constructing supporting and refuting patterns in Table 1.

Knowledge Graph Completion. In knowledge graphs, the connection between two nodes is de-
termined by both logic and node attributes. Table 4 summarizes all experimental results. As can
be seen, GraphANGEL outperforms all baselines across all datasets. One explanation is that most
knowledge graph embedding techniques focus on mining the hidden information in each tuple, which
is similar to only considering the patterns in Pair shapes in Table 1. However, other patterns contain
information involving multiple relations, which enables to model the logics.

In order to better illustrate our performance of these relations with few occurrences in the training
set, we solely report the results of testing each model on the 20% relations with few occurrence in
Table A4 (see Appendix A6.1 for details). From the comparison between Tables 4 and A4, we can
observe that with few shots of relations, GraphANGEL can have a better generalization ability. One
reason is that embeddings of the relations with few occurrences cannot be trained with plenty of data
samples, resulting in low expressive power of the relations. In contrast, GraphANGEL does not learn
the embeddings directly, but learns to represent the relations of the related logics. However, it is still
more challenging to model these relations that lead to a drop in performance.

Figure 3: Performance change of GraphANGEL with different number of subgraphs in terms of ACC and AUC.

4.3 EFFECT OF DIFFERENT PATTERNS

We systematically investigate the effect of three shapes of patterns used in GraphANGEL. For each
dataset, we evaluate the effect of the patterns in 3-cycle and 4-cycle shapes by the performance
of GraphANGEL3�cycle and GraphANGEL4�cycle. Since different shapes of patterns represent
different composition logical rules, as shown in Table 1, patterns in Pair shape are the most general
but include the least structure information, while those in 4-cycle shape are rich in the structure
but less common. Hence, these patterns have their unique power in representing logics. Although
it is hard to determine whether 3-cycle or 4-cycle shaped patterns is more powerful, as shown in
Tables 3, 4 and A4, GraphANGEL with patterns in all shapes achieves the best performance. Besides
the pattern type, we also investigate how the number of sampled subgraphs affects the performance.
Taking Amazon and Douban Book datasets as examples, we show the performance of GraphANGEL
under different K and Q in terms of ACC and AUC in Figure 3. One explanation is that the subgraphs
following target patterns are constricted within the neighborhood of source and target nodes, the
number of which is much smaller than subgraphs following supporting and refuting patterns.

7

