
similarities between the same type of nodes and ratings between
di�erent types of nodes) than simply employing CNN layers. Also, it
(NIRec > NIRecGCN) shows that the attention mechanism can better
utilize the metapath-based interactive information. The node-level
interactions and path-level metapaths may contribute di�erently
to the �nal performance. Ignoring such in�uence may not be able
to achieve optimal performance.
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(a) Attention Aggregation Model (b) Neighborhood Interaction Model

Figure 7: Entropy histogram. Note: The x-axis represents the
entropy of attention distribution.

(a) Ai, j of AAM (b) Zi, j of AAM

(c) Ai, j of NI (d) Zi, j of NI

Figure 8: Case study of test case (u46, m3993). Note: In (a)-(d),
the y-axis represents neighbors of user 46, and the x-axis
represents neighbors of item 3993. AAM: attention aggrega-
tion model (Eq. (10)).

through user-side and item-side attention networks separately,
i.e., Ai, j = u,i , j , yet NI learns from both sides, i.e., Ai, j = i, j .

Since the elements in A sum to 1, a weight matrix can be regarded
as a distribution. Thus we can calculate its entropy to quantitatively
measure the information it contains. We calculate the entropy of
the weight matrix A of each test sample and plot the histograms
of entropy in Fig. 7. The x-axis represents the entropy value, the
larger value it has, the more information it contains. We can see
that the weight matrices in NI model have higher entropy, i.e., more
informative. Besides, the average entropy of GAT is 2.12, and 3.18 for
NI. Considering the signi�cant improvements of NI over RippleNet
(a special case of AAM) in Table 2, these results con�rm the early
summarization problem, and our NI model has the capability to
learn more informative neighborhood interactions.

We also randomly select a user-item pair (“u46”, “m3993”) from
the test set and plots the weight matrix A and interaction matrix Z.
We compare AAM and NI in Fig. 8. The x-axis represents the neigh-
bors of item “m3993”, and y-axis for the neighbors of user “u46”. In

user-item interaction graph, users are linked to items with positive
feedbacks. Thus user neighbors are items, and item neighbors are
users. Grids with darker colors have larger values.

We can observe that: (i) Comparing (a) and (c), we �nd AAM
mainly focuses on a single neighbor “m2140” of the user, while
NI focuses on many more other neighbor pairs. (ii) Comparing (a)
and (b), we �nd AAM disregards those neighbor pairs with high
interactions, e.g., , (“m552”, “u1744”). While in (c) and (d), we �nd NI
preserves more neighbor pairs with high interactions. (iii) Checking
in training set, we �nd the pairs with high interactions in our NI
model, such as (“m7155”, “u1744”), (“m1031”, “u7521”) and (“m2140”,
“u1744”) are positive samples, which should be fully considered in
prediction. Based on the above observations, we conclude AAM
may lose useful information after compressing neighborhood in-
formation into single representation, while NI can preserve more
useful information.

4 RELATED WORK
Our work is highly related with knowledge-enhanced recommen-
dation, and graph representation models.

4.1 Knowledge-enhanced Recommendation
Traditional recommender systems mostly su�er from several inher-
ent issues such as data sparsity and cold start problems. To address
the above problems, researchers usually incorporate side informa-
tion. The utilization of side information mainly categorizes into 3
groups.

The �rst is feature-based, which regards side information as
plain features and concatenates those features with user/item IDs
as model input, including Matrix factorization models [13, 16], DNN
models [6, 19, 20], etc. Feature-based models highly rely on manual
feature engineering to extract structural information, which is not
end-to-end and less e�cient.

The second way is meta path-based, which builds heterogeneous
information network (HIN) on the side information. For example,
PER [29] and FMG [31] extract meta path/meta graph-based fea-
tures to represent the connection between users and items along
di�erent types of relation paths. MCRec [10] instead learns con-
text representations from meta paths to facilitate recommendation.
DeepCoevolve [4] further leverages user-item ineteraction network
in sequential recommendation. Though these models are more in-
tuitive, they usually require much expertise in meta-path design,
making them less applicable in scenarios with complex schema.

Compared with the previous 2 ways, external knowledge graph
contains much more fruitful facts and connections about items [1].
For example, CKE [30] proposes a general framework to jointly
learn from the auxiliary knowledge graph, textual and visual in-
formation. DKN [27] is later proposed to incorporate knowledge
embedding and text embedding for news recommendation. More
recently, RippleNet [26] is proposed to simulate user preferences
over the set of knowledge entities. It automatically extends user
preference along links in the knowledge graph, and achieves state-
of-the-art performance in knowledge graph-based recommendation.
The major di�erence between prior work and ours is that NI focuses
more on the interactions between neighbor nodes, and predict from
graph structures directly.
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Figure 6: An illustrative example of the interpretability of
interaction-speci�c attention distributions for NIRec. The
number denotes the logic �ow of interpretation.

Case Study (RQ3). A major contribution of NIRec is the incor-
poration of the node- and path-level attention mechanism, which
takes the interaction relation into consideration in learning e�ec-
tive representations for recommendation. Besides the performance
e�ectiveness, another bene�t of the attention mechanism is that
it makes the recommendation result highly interpretable. To see
this, we select the user u692 in the Movielens dataset as an illus-
trative example. Two interaction records of this user have been
used here, namely m805 and m920. In Figure 6, we can see that
each user-movie pair corresponds to a unique attention distribution,
summarizing the contributions of the metapaths. The relation be-
tween u692-m805 pair mainly relies on the metapaths UMUM and
UMMM, while u692-m920 pair mainly relies on metapath UMGM
(denoted by 0 in Figure 6). By inspecting into the dataset, it is
found that at least �ve �rst-order neighbors of u692 have watched
m805, which explains why user-oriented metapaths UMUM and
UUUM play the key role in the �rst pair. As for the second pair, we
�nd that the genre of m805 is g3, which is the favorite movie genre
of u692. This explains why genre-oriented metapath UMGM plays
the key role in the second interaction. Our path-level attention is
able to produce path-speci�c attention distributions.

If we wonder more speci�c reasons, we can have a look at the
node-level attention. Here, we plot the interactive attention values
in Figure 6. We can observe that the attention value of the similarity
for the same type nodes is very high (denoted by 1 in Figure 6).
By inspecting into the dataset, we can �nd that there are metapaths
connected between u692 and m920. In other words, some parts of
the metapath-guided neighborhood of u692 and m920 overlap each
other, which causes high similarity. Also, the co-ratings between
two neighborhoods play another key role (denoted by 2 in Fig-
ure 6). It is natural, since in these neighborhoods, many users are

fans of g3 and movies are in type of g3, which causes the co-ratings
among them becoming really high. According to the analysis above,
we can see that the distributions of attention weights are indeed
very skew, indicating some interactions and metapaths are more
important to consider than the others.

Impact of Metapath (RQ4). In this section, we investigate the
impact of di�erent metapaths on the recommendation performance
through gradually incorporating metapaths into the proposed model.
For ease of analysis, we include the NeuMF as the reference baseline.
In Figure 7, we can observe that the performance of NIRec overall
improves with the incorporation of more metapaths. Meanwhile,
metapaths seem to have di�erent e�ects on the recommendation
performance. Particularly, we can �nd that, when adding UMGM,
NIRec has a signi�cant performance boost in the Movielens dataset
(Figure 7(a)). Similar situation happens when adding UIVI in the
Amazon dataset (Figure 7(b)). These �ndings indicate that di�erent
metapaths contribute di�erently in the �nal result, consistent with
previous observations in Section 5.3,

Impact of N-Hop Neighborhood (RQ4). In this section, we in-
vestigate the impact of di�erent lengths of neighborhoods, i.e.,
n-hop neighborhood. When changing the length of the neighbor-
hood, we make other factors, e.g., metapath type �xed. For example,
when the metapath is UMGM, we study UM for length 2, UMGM
for length 4, and UMGMGM for length 6. We conduct similar proce-
dures for the other metapaths and obtain the results in Figure 8. We
can observe that the performance �rst improves and then declines
when the length of the neighborhood increases. Particularly, we
can �nd that NIRec reaches the best performance in the metapath
with length 4. The possible reason may be that as the length of the
neighborhood increases, the metapath-guided neighborhood can
maintain more information. When the length of the neighborhood
is smaller than 4, the information is mainly useful for the �nal
performance. However, when the length exceeds 4, the information
includes noisy message which harms the recommendation perfor-
mance. These �ndings indicate that di�erent lengths of metapaths
contribute di�erently to the �nal performance. Also, it should be
noted that our model is able to interact and aggregate neighbors in
di�erent lengths, as illustrated in Figure 2.

6 CONCLUSION AND FUTURE WORK
In this paper, we introduced the problem of “early summarization”
and proposed a neighborhood-based interaction-enhanced recom-
mendation model, i.e., NIRec, to address this problem. We �rst
introduce the de�nition of metapath-guided neighborhoods to pre-
serve the heterogeneity on HINs. Then, we elaborately designed
an interaction module to capture the similarity of each source and
target node pair through their neighborhoods. To fuse the rich
semantic information, we proposed the node- and path-level at-
tention mechanism to capture the key interaction and metapath,
respectively. Extensive experimental results have demonstrated the
superiority of our model in both recommendation e�ectiveness and
interpretability. Currently, our approach is able to capture inter-
active information only in the structural (graph) side e�ectively.
However, there is rich semantic information on both the structural
(graph) and non-structural (node) sides. In the future, a promising
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• (c) finally combines rich information through aggregation layer

Table 1: The results of CTR prediction in terms of AUC, ACC. Note: “*” indicates the statistically signi�cant improvements
over the best baseline, with p-value smaller than 10�6 in two-sided t-test.

Model Movielens LastFM AMiner Amazon
AUC ACC AUC ACC AUC ACC AUC ACC

NeuMF [7] 0.7890 0.7378 0.8900 0.8102 0.8130 0.7897 0.6841 0.6405
HAN [31] 0.8110 0.7530 0.9113 0.8289 0.8451 0.8284 0.7207 0.6831

HetGNN [35] 0.7830 0.7411 0.9020 0.8270 0.8202 0.7939 0.7061 0.6627
LGRec [8] 0.8030 0.7504 0.9127 0.8331 0.8308 0.8130 0.7058 0.6572
MCRec [9] 0.8161 0.7622 0.9274 0.8471 0.8512 0.8339 0.7274 0.6940

IPE [13] 0.8186 0.7693 0.9235 0.8440 0.8411 0.8209 0.7173 0.6789
NIRecCNN 0.8342 0.7777 0.9353 0.8593 0.8734 0.8504 0.7397 0.7060
NIRecGCN 0.8290 0.7630 0.9290 0.8571 0.8636 0.8475 0.7379 0.7042

NIRec 0.8468⇤ 0.7896⇤ 0.9404⇤ 0.8665⇤ 0.8760⇤ 0.8562⇤ 0.7493⇤ 0.7110⇤

dataset4 and Amazon e-commerce dataset5. We treat a rating as
an interaction record, indicating whether a user has rated an item.
Also, we provide the main statistics of four datasets are summarized
in Table 2 in appendix to help with reproducibility. The �rst row of
each dataset corresponds to the numbers of users, items and inter-
actions, while the other rows correspond to the statistics of other
relations. We also report the selected metapaths for each dataset in
the last column of the table. The detailed data preprocessing of is
given at Section 5.1 in appendix.

5.2 Compared Methods
We use six baseline methods containing heterogeneous and attrib-
uted graph embedding models such as HAN, HetGNN, and IPE,
as well as recommendation models such as NeuMF, LGRec, and
MCRec. It is worth noting that, HAN, HetGNN, IPE, and MCRec
are recently proposed, state-of-the-art models.
• NeuMF: He et al. [7] introduced a generalized model consisting

of a matrix factorization (MF) component and an MLP component.
• HAN: Wang et al. [31] introduced hierarchical attention to capture

node-level and semantic-level information.
• HetGNN: Zhang et al. [35] introduced an uni�ed framework to

jointly consider heterogeneous structural information as well as
heterogeneous contents information, adaptive to various HIN
tasks.

• LGRec: Hu et al. [8] proposed a uni�ed model to explore and fuse
local and global information for recommendation.

• MCRec: Hu et al. [9] leveraged rich metapath-based context to
enhance the recommendation performance on HINs.

• IPE: Liu et al. [13] proposed interactive paths embedding to cap-
ture rich interaction information among metapaths.

In order to investigate the impact of di�erent components in our
model, we set several variants of NIRec model as baselines.
• NIRecCNN: a variant of NIRec model which employs Convolu-

tional Neural Networks (CNN) to capture contextual information
within the source/target neighborhood without any interaction.

• NIRecGCN: is another variant of NIRec model which employs
Graph Convolutional Networks (GCN) to aggregate interaction
information instead of attention mechanism adopted in this paper.

4https://AMiner.org/data
5http://jmcauley.ucsd.edu/data/amazon/

One can observe that NIRecCNN, NIRecGCN are designed to test
performance gains from interaction and aggregation module, re-
spectively. We also provide detailed con�guration in Section A.3 in
the appendix.

5.3 Result Analysis
We evaluate these models on the click-through rate prediction (CTR)
task. We use the metrics Area Under Curve (AUC) and Accuracy
(ACC), which are widely used in binary classi�cation problems. The
details of the implementation is given in Section A.4.

Experimental Results and Analysis (RQ1). The comparison re-
sults of our proposed model and baselines on four datasets are
reported in Table 1. The major �ndings from experimental results
are summarized as follows:
• Our model NIRec is consistently better than all baselines on the

four datasets. The results indicate the e�ectiveness of NIRec on
the task of CTR prediction, which has adopted a principled way to
leverage interaction information for improving recommendation
performance.

• Among the two kinds of baselines, most metapath-based meth-
ods (HAN, MCRec, IPE) outperform graph-based or feature-based
methods (HetGNN, NeuMF) in most cases. An intuitive explana-
tion is that those metapath-based methods can better capture the
rich high-order structural information on HINs. It should be noted
that our model NIRec based on metapath-guided neighborhood
is able to jointly consider �rst-order neighbor information with
high-order semantic message.

• Among HIN-based baselines, the recently proposed methods MCRec
and IPE gain better performance than the others. It is easy to notice
that both of them try to capture context information or interactive
patterns among paths. A possible reason is that simple aggrega-
tion of semantic message on paths may lose some key information.
It should be noted that NIRec not only captures interaction infor-
mation but also has potentially good interpretability.

Ablation Study (RQ2). In order to investigate the contribution
of each component to the �nal recommendation performance, we
design two variants of NIRec, namely NIRecCNN and NIRecGCN,
to study interaction and aggregation modules, respectively. The
results are shown in Table 1. The �ndings are in two aspects. First,
it (NIRec > NIRecCNN) indicates that our convolutional interac-
tion strategy is able to better capture interaction information (i.e.,
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Figure 2: The overall architecture of NIRec: (a) it �rst samples metapath-guided neighborhood (Section 4.2); (b) next constructs
interactive information via interaction layer (Section 4.3); (c) �nally combines rich information through aggregation layer
(Section 4.4).

relationi as the input. Second, we select metapath-guided neighbors
for source and target nodes via neighbor samplings (Figure 2(a)).
Third, we introduce the interactive convolutional operation to gen-
erate potential interaction information among their neighborhoods
(Figure 2(b)). After that, we capture the key interactions and aggre-
gate information via attention mechanism in both node and path
level (Figure 2(c)). Finally, NIRec provides the �nal prediction. We
illustrate the architecture in detail in the following subsections.

4.2 Neighborhood Sampling
To generate meaningful node sequences, the key technique is to
design an e�ective random walk strategy that is able to capture the
complex semantics re�ected in HINs. Hence, we propose to use the
metapath guided random walk method. Giving a HIN G = {V, E}
and a metapath � : A0, · · · ,Ai , · · · ,AI�1, where Ai 2 Ai denotes
i-th node guided by metapath �. Note that we include user set U
and item set I in attribute set A for convenience. The walk path is
generated according to the following distribution:

P(nk+1 = x |nk = �) =
8>><
>>:

1
|N1

� (�)|
, (�,x) 2 E and �,x 2 Ak ,Ak+1

0, otherwise.
(1)

where nk is the k-th node in the walk, N1
� (�) means the �rst-order

neighbor set for node � guided metapath �. A walk will follow the
pattern of the metapath repetitively until it reaches the prede�ned
length. It is worth noting that, according to De�nition 3.2, there is
no need to sample a complete metapath from source to target node.

4.3 Interaction Module
In previous HIN-based recommendations, most approaches lever-
age graph representation techniques to �nd key nodes or metapaths
[31] and capture the complex structure [35]. To further mine inter-
action information and deal with the early summarization issue, we
propose an interaction module based on metapath-guided neigh-
bors.

Due to the heterogeneity of nodes, di�erent types of nodes have
di�erent feature spaces. Hence, for each type of nodes (e.g., node

with type �i ), we design the type-speci�c transformation matrix
M�i to project the features of di�erent types of nodes into a uni�ed
feature space. The project process can be shown as follows:

e 0i = M�i · ei , (2)

where ei and e 0i are the original and projected features of node i ,
respectively. By type-speci�c projection operation, our model is
able to handle arbitrary types of nodes.

Considering that neighbors in di�erent distances to the source/target
node usually contribute di�erently to the �nal prediction, we di-
vide the sampled metapath-guided neighborhood into several inner-
distance and outer-distance neighbor groups. As illustrated in Fig-
ure 3, when we set distance as 1, we can get inner-distance Group 1
and outer-distance Group 5. In a similar way, we can obtain 2I � 1
groups, where I denotes the metapath length. We argue that in-
teractions should only be employed in corresponding groups. In
order to perform interaction in each neighbor group, we need to
face two situations. If there is only one node in Group, we adopt
element-wise product (“AND”) operation to measure their simi-
larity or co-ratings, e.g., r (uA,mB) in Group 0 case. When there is

Figure 3: An illustrated example for the motivation in inter-
action module design. Neighborhood is grouped according
to the distance to the source/target node. Interaction is only
employed between corresponding neighborhoods.

Figure 1: Heterogeneous information network and network
schema. (a) movie mA and its metapath-guided neighbors
(e.g, N2

UMD(uA) = {(uA,mA,dA), (uA,mA,dC), (uA,mB,dB)}) (b)
three types of nodes (user, movie, director) and two types of
relations/interactions (user-movie, movie-director) in solid
line, potential interactions (user-director) in dashed line. (c)
metapaths invloved (e.g., User-Movie (UM) and User-Movie-
Director (UMD)).

Also, rich structural information of nodes outside metapaths, i.e.,
their neighborhoods, is omitted in these approaches.

Based on the above analysis, when designing HIN, state-of-the-
art methods have not well solved, even may not be aware of, the
following challenges faced by HIN-based recommendation, which
we address in this paper:
• (C1) How to tackle the early summarization issue? Due to the

complex structures and large scales of the graphs, it is hard to
make predictions directly. Hence, we consider the interactive lo-
cal structures are valuable and helpful. For example, a system is
recommending a user to a user uA based on an HIN as Figure 1
shows. When we consider a candidate user such as uB, it is nat-
ural to consider their co-movies and co-directors; namely there
may exist a relationship between uA and uB since they share the
same moviemB. Actually, this is an example of “AND” operation
between users’ neighborhoods. Also, it is easy to extend this into
co-rating. In other words, the co-ratings betweenuA touB’s neigh-
borhood and uB to uA’s neighborhood indicate the similarity of
users’ preferences, which could be helpful for recommendation.
We argue that this interactive local structures are hidden and not
fully utilized in previous methods.

• (C2) How to design an end-to-end framework to capture and
aggregate the interactive patterns between neighborhoods? A re-
cent attempt [13] focused on measuring the semantic proximity by
interactive-paths connecting source and target nodes. However,
it overlooked rich information hidden in these node neighbor-
hoods. An HIN contains diverse semantic information re�ected by
metapaths [27]. Also, there are usually various nodes in di�erent
types involved in one path. Di�erent paths/nodes may contribute
di�erently to the �nal performance. Hence, besides a powerful
interaction module, a well-designed aggregation module to distin-
guish the subtle di�erence of these paths/nodes and select some
informative ones is required.

• (C3) How to learn the whole system e�ciently? Learning interac-
tive information on HINs is always time-consuming; especially

when faced with paths in di�erent types and lengths for metapath-
based approaches [13] and large-scale high-order information for
graph-based approaches [18]. A methodology to both e�ciently
and e�ectively learn the rich interactive information on HINs is
always expected.

To tackle these challenges, we propose NIRec, a neighborhood-
based interaction model for HIN-based recommendation. First, we
extend the de�nition of neighborhood in homogeneous graphs into
metapath-guided neighborhood in heterogeneous graphs. Next, we
design a heterogeneous graph neural network architecture with
two modules to aggregate feature information of sampled neighbors
in previous step. The �rst module, namely interaction module, con-
structs interactive neighborhood and captures latent information
between “AND” operation. The second module, namely aggrega-
tion module, mainly consists of two components: (i) node-level
attention mechanism to measure the impacts of di�erent nodes in-
side a metapath-guided neighborhood, and (ii) path-level attention
mechanism to aggregate content embeddings of di�erent neighbor-
hoods. Finally, we formulate interaction in a convolutional way and
learn e�ciently with fast Fourier transform (FFT). To summarize,
the main contributions of our work are:
• We formalize and address an important, but seldom exploited,

early summarization issue on HIN.
• We present an innovative convolutional neighborhood-based in-

teraction model for recommendation on HINs, named NIRec,
which is able to capture and aggregate rich interactive patterns in
both node- and path-levels.

• We propose an e�cient end-to-end learning algorithm incorported
with fast Fourier transform (FFT).

We conduct extensive experiments on four public datasets. Our
results demonstrate the superior performance of NIRec over state-
of-the-art baselines.

2 RELATED WORK

Heterogeneous Information Network based Recommenda-
tion. As a newly emerging direction, heterogeneous information
network (HIN) [23] can naturally characterize complex objects
and rich relations in recommender systems. There is a surge of
works on learning representation in heterogeneous networks, e.g.
metapath2vec [2], HetGNN [35], HIN2vec [4], eoe [32]; and their ap-
plications, e.g. relation inference [26], classi�cation [36], clustering
[20], author identi�cation [1]. Among them, HIN based recommen-
dation has been increasingly attracting researchers’ attention in
both academic and industry �elds. For instance, Feng and Wang
[3] proposed to alleviate the cold start issue with heterogeneous
information network contained in social tagged system. Metapath-
based methods were introduced into hybrid recommender system in
[34]. Yu et al. [33] leveraged personalized recommendation frame-
work via taking advantage of di�erent types of entity relationships
in heterogeneous informaiton network. Luo et al. [14] proposed
a collaborative �ltering based social recommendation containing
heterogeneous relations. Shi et al. [25] introduced weighted het-
erogeneous information network In [24], the similarities of both
users and items are evaluated unser dual regularization framework.
Recently, Hu et al. [9] leveraged metapath-based context in top-NAlgorithm 1 NIRec

INPUT: HIN G = (V, E); node feature {e, i 2 V}; metapath set {�0, �1, · · · , �P�1};
source code ns and target node nt

OUTPUT: �nal link prediction Ŷ between ns and nt

1: Initialize all parameters.
2: repeat
3: for each metapath �k 2 {�0, �1, · · · �P�1} do
4: Find metapath-guided neighborhoods of ns , nt : N�k (ns ), N�k (nt ).
5: Obtain interaction result H[N�k (ns ),N�k (nt )].
6: Calculate node/element-level embedding z�k .
7: end for
8: Fuse path/matrix-level embedding Z .
9: Obtain �nal predication Ŷ via MLP.

10: Calculate loss L(Y , Ŷ ), and Back propagation.
11: until convergence

more than one node, we �rst do interaction by production and then
aggregate by summarization, e.g., r (uA,dC) + r (mB,mB) in Group 1
case.

Inspired by signal processing [16], this neighborhood division
and inner group interaction can be formulated as a uni�ed operation
named convolution. Roughly speaking, the convolution mainly
contains three kinds of operations, namely shift, product, and sum,
which are employed repeatedly until they meet the end of the path.
Take Figure 4 for example. Our task is to calculate the interaction
between source user neighborhooduA,mB,dB,mD and target movie
neighborhood mB,dC,mC,uC. First, we inverse the order of target
movie neighborhood and obtain uC,mC,dC,mB. We shift it from
left to right and observe the overlapping nodes during the shift.
As shown in Figure 4(a), the �rst overlapping happens between
source and target nodes, namely 0-hop neighbor. We utilize the
product operation and obtain the co-ratings between di�erent types
of nodes r (uA,mB) (as Figure 4(b) shows). Then, we repeatedly shift,
product, and sum, and then reach the situation where all nodes are
overlapped. The result in this situation is the similarity between the
same type of nodes r (uA,uC) + r (mB,mC) + r (dB,dC) + r (mD,mB)
(as shown in Figure 4(c)). In a similar way, the last interaction
happens between di�erent types of nodes r (mD,uC) (as shown in
Figure 4(d)).

Let H[N� (o)] denote the embedding matrix of metapath � guided
neighbors of object o, which can be formulated as

H[N� (o)]l = [e�
0 � e

�
1 � · · · � e

�
I�1], (3)

where l represents the l-th metapath, e�
i means the embedding

of the node in the i-th step of one metapath, � denotes the stack
operation, I means the metapath length. Hence, as illustrated in
Figure 5, H[N� (o)] is a RL⇥I⇥E matrix, where L is the number of
metapaths, I is the length of the metapath, E means the dimension
of the node embedding. Based on convolutional operations, we
further de�ne the interaction between neighborhoods of source
and target objects as

H[N� (s),N� (t)]l = H[N� (s)]l � H[N� (t)]l , (4)

Figure 4: An illustrated example for the result after convo-
lutional interaction operation. The result contains informa-
tion of both node similarity (c) and node co-ratings (b) & (d).

where � denotes the convolutional operation. According to the
de�nition of convolution, one can write formulation as

H[N� (s),N� (t)]l,n =
’
a,b

a+b mod N=n

H[N� (s)]l,a ·H[N� (t)]l,b . (5)

One can �nd that H[N� (s),N� (t)] 2 RL⇥N⇥E , N is the length of
convolution outputs and it equals to Is + It � 1 where Is , It denote
the metapath length of source and that of target nodes respectively.

The well-known convolution theorem states that convolution op-
erations in the spatial domain are equivalent to pointwise products
in the Fourier domain. Let F denote the fast Fourier transformation
(FFT) and F �1 its inverse, we can compute convolutions as

H[N� (s),N� (t)] = F �1(F (H[N� (s)]) · F (H[N� (t)])). (6)

Let H[N� ] denote H[N� (s),N� (t)] in the following sections for
convenience. As stated in [15], the time complexity of plain con-
volution is O(I2), and it is reduced to O(I log(I )) when using FFT.
According to the analysis above, we can conclude that not only
can this structure capture both node similarity and co-ratings in
grouped neighborhood, but also it can implement with high e�-
ciency.

4.4 Aggregation Module
In this section, we consider the aggregation module in two sides.
On the �rst side, from Figure 5, we can see that elements in in-
teraction matrix H[N� ] = H[N� (s),N� (t)], contain interactions
between various types of nodes. Hence, it is natural to capture the
key interaction in element/node-level during aggregation proce-
dure. On the other side, every object o on HIN contains multiple
types of semantic information represented with di�erent metap-
ath �0, �1, · · · , �P�1. This further causes various interaction matrix
H[N�0 ], H[N�1 ], · · · , H[N�P�1 ]. To capture key message in a com-
plex graph, we need to fuse multiple semantics revealed by di�erent
metapath, i.e., in path/matrix-level.

Node/Element-level Attention. Similar as [31], we leverage a
self-attention mechanism to learn the weights among various kinds
of nodes in metapath � as

h
�
i j = (h�

i WT ) · (h�
j WS ), (7)

Figure 5: An illustrated example of the embedding matrix of
metapath � guided neighborhood of source node s (H[N� (s)]),
and target node t (H[N� (t)]) generated according to Eq. 3; and
interaction matrix (H[N� (s),N� (t)]) calculated according to
Eq. 5.
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movie neighborhood and obtain uC,mC,dC,mB. We shift it from
left to right and observe the overlapping nodes during the shift.
As shown in Figure 4(a), the �rst overlapping happens between
source and target nodes, namely 0-hop neighbor. We utilize the
product operation and obtain the co-ratings between di�erent types
of nodes r (uA,mB) (as Figure 4(b) shows). Then, we repeatedly shift,
product, and sum, and then reach the situation where all nodes are
overlapped. The result in this situation is the similarity between the
same type of nodes r (uA,uC) + r (mB,mC) + r (dB,dC) + r (mD,mB)
(as shown in Figure 4(c)). In a similar way, the last interaction
happens between di�erent types of nodes r (mD,uC) (as shown in
Figure 4(d)).
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neighbors of object o, which can be formulated as
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of the node in the i-th step of one metapath, � denotes the stack
operation, I means the metapath length. Hence, as illustrated in
Figure 5, H[N� (o)] is a RL⇥I⇥E matrix, where L is the number of
metapaths, I is the length of the metapath, E means the dimension
of the node embedding. Based on convolutional operations, we
further de�ne the interaction between neighborhoods of source
and target objects as
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One can �nd that H[N� (s),N� (t)] 2 RL⇥N⇥E , N is the length of
convolution outputs and it equals to Is + It � 1 where Is , It denote
the metapath length of source and that of target nodes respectively.

The well-known convolution theorem states that convolution op-
erations in the spatial domain are equivalent to pointwise products
in the Fourier domain. Let F denote the fast Fourier transformation
(FFT) and F �1 its inverse, we can compute convolutions as

H[N� (s),N� (t)] = F �1(F (H[N� (s)]) · F (H[N� (t)])). (6)

Let H[N� ] denote H[N� (s),N� (t)] in the following sections for
convenience. As stated in [15], the time complexity of plain con-
volution is O(I2), and it is reduced to O(I log(I )) when using FFT.
According to the analysis above, we can conclude that not only
can this structure capture both node similarity and co-ratings in
grouped neighborhood, but also it can implement with high e�-
ciency.

4.4 Aggregation Module
In this section, we consider the aggregation module in two sides.
On the �rst side, from Figure 5, we can see that elements in in-
teraction matrix H[N� ] = H[N� (s),N� (t)], contain interactions
between various types of nodes. Hence, it is natural to capture the
key interaction in element/node-level during aggregation proce-
dure. On the other side, every object o on HIN contains multiple
types of semantic information represented with di�erent metap-
ath �0, �1, · · · , �P�1. This further causes various interaction matrix
H[N�0 ], H[N�1 ], · · · , H[N�P�1 ]. To capture key message in a com-
plex graph, we need to fuse multiple semantics revealed by di�erent
metapath, i.e., in path/matrix-level.

Node/Element-level Attention. Similar as [31], we leverage a
self-attention mechanism to learn the weights among various kinds
of nodes in metapath � as
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Figure 5: An illustrated example of the embedding matrix of
metapath � guided neighborhood of source node s (H[N� (s)]),
and target node t (H[N� (t)]) generated according to Eq. 3; and
interaction matrix (H[N� (s),N� (t)]) calculated according to
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• （b） next constructs interactive information via interaction layer;
• neighborhood is grouped according to the distance to the

source/target node. Interaction is only employed between
corresponding neighborhoods, which can be formulated as
convolution operation in signal process field.

Figure 2: The overall architecture of NIRec: (a) it �rst samples metapath-guided neighborhood (Section 4.2); (b) next constructs
interactive information via interaction layer (Section 4.3); (c) �nally combines rich information through aggregation layer
(Section 4.4).

relationi as the input. Second, we select metapath-guided neighbors
for source and target nodes via neighbor samplings (Figure 2(a)).
Third, we introduce the interactive convolutional operation to gen-
erate potential interaction information among their neighborhoods
(Figure 2(b)). After that, we capture the key interactions and aggre-
gate information via attention mechanism in both node and path
level (Figure 2(c)). Finally, NIRec provides the �nal prediction. We
illustrate the architecture in detail in the following subsections.

4.2 Neighborhood Sampling
To generate meaningful node sequences, the key technique is to
design an e�ective random walk strategy that is able to capture the
complex semantics re�ected in HINs. Hence, we propose to use the
metapath guided random walk method. Giving a HIN G = {V, E}
and a metapath � : A0, · · · ,Ai , · · · ,AI�1, where Ai 2 Ai denotes
i-th node guided by metapath �. Note that we include user set U
and item set I in attribute set A for convenience. The walk path is
generated according to the following distribution:

P(nk+1 = x |nk = �) =
8>><
>>:

1
|N1

� (�)|
, (�,x) 2 E and �,x 2 Ak ,Ak+1

0, otherwise.
(1)

where nk is the k-th node in the walk, N1
� (�) means the �rst-order

neighbor set for node � guided metapath �. A walk will follow the
pattern of the metapath repetitively until it reaches the prede�ned
length. It is worth noting that, according to De�nition 3.2, there is
no need to sample a complete metapath from source to target node.

4.3 Interaction Module
In previous HIN-based recommendations, most approaches lever-
age graph representation techniques to �nd key nodes or metapaths
[31] and capture the complex structure [35]. To further mine inter-
action information and deal with the early summarization issue, we
propose an interaction module based on metapath-guided neigh-
bors.

Due to the heterogeneity of nodes, di�erent types of nodes have
di�erent feature spaces. Hence, for each type of nodes (e.g., node

with type �i ), we design the type-speci�c transformation matrix
M�i to project the features of di�erent types of nodes into a uni�ed
feature space. The project process can be shown as follows:

e 0i = M�i · ei , (2)

where ei and e 0i are the original and projected features of node i ,
respectively. By type-speci�c projection operation, our model is
able to handle arbitrary types of nodes.

Considering that neighbors in di�erent distances to the source/target
node usually contribute di�erently to the �nal prediction, we di-
vide the sampled metapath-guided neighborhood into several inner-
distance and outer-distance neighbor groups. As illustrated in Fig-
ure 3, when we set distance as 1, we can get inner-distance Group 1
and outer-distance Group 5. In a similar way, we can obtain 2I � 1
groups, where I denotes the metapath length. We argue that in-
teractions should only be employed in corresponding groups. In
order to perform interaction in each neighbor group, we need to
face two situations. If there is only one node in Group, we adopt
element-wise product (“AND”) operation to measure their simi-
larity or co-ratings, e.g., r (uA,mB) in Group 0 case. When there is

source (0 hop neighbor)

0 & 1 hop neighbor

source (0) & 1 & 2 & 3 hop neighbors target (0) & 1 & 2 & 3 hop neighbors

target (0 hop neighbor)

0 & 1 hop neighbor

0 & 1 & 2 hop neighbor
0 & 1 & 2 hop neighbor

Interaction ( & )

1 & 2 & 3 hop neighbor

1 & 2 & 3 hop neighbor

Group 0

2 & 3 hop neighbor
2 & 3 hop neighbor

3 hop neighbor
3 hop neighbor

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Figure 3: An illustrated example for the motivation in inter-
action module design. Neighborhood is grouped according
to the distance to the source/target node. Interaction is only
employed between corresponding neighborhoods.

Figure 7: Performance change of NIRec when gradually incorporating metapaths in terms of AUC.
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direction is extending neighborhood interaction and aggregation
modules to capture key message from two sides and adapt to more
general scenarios.
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direction is extending neighborhood interaction and aggregation
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general scenarios.
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Figure 7: Performance change of NIRec when gradually incorporating metapaths in terms of AUC.

Figure 8: Performance change of NIRec with di�erent neigh-
borhood length in terms of AUC and ACC.

direction is extending neighborhood interaction and aggregation
modules to capture key message from two sides and adapt to more
general scenarios.
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