An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph

Jiarui Jin¹, Jiarui Qin¹, Yuchen Fang¹, Kounianhua Du¹, Weinan Zhang¹, Yong Yu¹,

Zheng Zhang², Alexander J. Smola²

¹Shanghai Jiao Tong University, ²Amazon Web Services

Background

Heterogeneous Graph

Our Model (NIRec)

(a) Toy Example

(c) Metapaths

Challenges

How to tackle the *early summarization issue* (to distinguish useful patterns from noise).

- How to design an end-to-end framework to capture and aggregate the interactive patterns between neighbors.
 - graph-based: low generalization formulation, unable to model high-order interactions.
- metapath-based: metapaths are heterogeneous and often in different length.
 How to learn the whole system efficiently. (Extending interactions in heterogeneous information network, learning interactive patterns is always time-consuming)

- (a) first samples *metapath-guided neighborhood*;
 - $\mathcal{N}_{\rho}(o)$ is defined as the set of all visited objects when the object *o* walks along the given metapath ρ ;
 - e.g., $\mathcal{N}_{\rho}^{1}(u_{A}) = \{(u_{A}, m_{A}), (u_{A}, m_{B})\}, \mathcal{N}_{\rho}(u_{A}) = \mathcal{N}_{\rho}^{2}(u_{A}) = \{(u_{A}, m_{A}, d_{A}(u_{A}, m_{A}, d_{C}), (u_{B}, m_{B}, d_{B})\}$ (metapath: UMD)

- (b) next constructs interactive information via interaction layer;
 - neighboroocks grapped according to the distance to the source/target node. Interaction is only employed between corresponding neighborhoods, which can be formulated as convolution operation in signal process field.

Pros of our model

- address early summarization issue (encode user/item neighbor's information into single embedding vectors before final prediction)
 efficient learning heterogeneous and high-order neighbors
- alleviate data sparsity and cold start problem

Algorithm

Algorithm 1 NIRec

INPUT: HIN $\mathcal{G} = (\mathcal{V}, \mathcal{E})$; node feature $\{e, i \in \mathcal{V}\}$; metapath set $\{\rho_0, \rho_1, \cdots, \rho_{P-1}\}$; source code n_s and target node n_t

OUTPUT: final link prediction \hat{Y} between n_s and n_t

- 1: Initialize all parameters.
- 2: repeat
- 3: **for** each metapath $\rho_k \in {\rho_0, \rho_1, \cdots, \rho_{P-1}}$ **do**
- 4: Find metapath-guided neighborhoods of n_s , n_t : $N_{\rho_k}(n_s)$, $N_{\rho_k}(n_t)$.
- 5: Obtain interaction result $H[N_{\rho_k}(n_s), N_{\rho_k}(n_t)].$

• (c) finally combines rich information through any regation layer

Experiments

- 6: Calculate node/element-level embedding z^{ρ_k} .
- 7: **end for**
- 8: Fuse path/matrix-level embedding Z.
- 9: Obtain final predication \hat{Y} via MLP.
- 10: Calculate loss $\mathcal{L}(Y, \hat{Y})$, and Back propagation.
- 11: **until** convergence

Table 1: The results of CTR prediction in terms of AUC, ACC. *Note*: "*" indicates the statistically significant improvements over the best baseline, with *p*-value smaller than 10⁻⁶ in two-sided *t*-test.

Model	Movielens		LastFM		AMiner		Amazon	
Model	AUC	ACC	AUC	ACC	AUC	ACC	AUC	ACC
NeuMF [7]	0.7890	0.7378	0.8900	0.8102	0.8130	0.7897	0.6841	0.6405
HAN [31]	0.8110	0.7530	0.9113	0.8289	0.8451	0.8284	0.7207	0.6831
HetGNN [35]	0.7830	0.7411	0.9020	0.8270	0.8202	0.7939	0.7061	0.6627
LGRec [8]	0.8030	0.7504	0.9127	0.8331	0.8308	0.8130	0.7058	0.6572
MCRec [9]	0.8161	0.7622	0.9274	0.8471	0.8512	0.8339	0.7274	0.6940
IPE [13]	0.8186	0.7693	0.9235	0.8440	0.8411	0.8209	0.7173	0.6789
NIRec _{CNN}	0.8342	0.7777	0.9353	0.8593	0.8734	0.8504	0.7397	0.7060
NIRec _{GCN}	0.8290	0.7630	0.9290	0.8571	0.8636	0.8475	0.7379	0.7042
NIRec	0.8468*	0.7896*	0.9404*	0.8665 *	0.8760*	0.8562 *	0.7493*	0.7110 *

Full Paper Link

Jiarui Jin's WeChat

An illustrated example of the interpretability of interaction-specific attention distributions. The number denotes the logic flow of interpretation.

If you have any question, please feel free to contact Jiarui Jin (jinjiarui97@gmail.com)