
Lending Interaction Wings to Recommender Systems with Conversational Agents
Jiarui Jin1, Xianyu Chen1, Fanghua Ye2, Mengyue Yang2, Yue Feng2, Weinan Zhang1, Yong Yu1, Jun Wang2

Background

Challenges

Our main idea is to bridge the conversational model’s ability of online querying user preference on each attribute and the recommendation
model’s ability of offline estimating user interest for each item, allowing the whole system to query either an attribute or an item to users.

Pros of Our Idea

CORE, an offline-training and online-checking framework, where a recommender system operates as an offline
relevance score estimator (colored in green), while a conversational agent acts as an online relevance score
checker (colored in blue). Concretely, given a matrix of candidate items, as shown in (a), the recommender
system could offline assign an estimated relevance score to each item, and then the conversational agent would
online check these scores by querying either items or attributes, depicted in (b).

Our Framework (CORE)

• (a) Prior literature directly combine the conversational models and the recommender models with a reinforcement learning based framework.
However, reinforcement learning based methods mainly suffer from data insufficiency problem and their training procedure usually requires a
large amount of data.

• (b) Previous solution for determining whether items or attributes is to establish a new neural network as a controller to control when to use the
recommender component and when to apply the conversational component. However, they lack a unified metric to mathematically measure
whether to query an item or an attribute in each case.

Algorithm

If you have any question, please feel free to contact Jiarui Jin (jinjiarui97@gmail.com)

1Shanghai Jiao Tong University, 2University College London

Conversational
Model

5

3

5

3

Y N Y

N

Y

N

Y

N

N

Y

N

N
Recommender

Model

I want to book a hotel.

B

C

D

A

(a) Matrix of Candidate Items (b) Conversational Model

which level do you prefer?
3 or 5

5.

Do you require a television?

No.

I find hotel B for you.

Great. Thank you.

(c) Recommender Model

I want to book a hotel.

I have computed relevance
score for each candidate item:
hotel A is 0.05, hotel B is 0.4,
hotel C is 0.5, hotel D is 0.05.

I recommend hotel C.

No.

I recommend hotel B.

Great. Thank you.

My computed scores show his
interest in hotels C and B, but I
am uncertain about which one

fits him better.

I can query "breakfast" for you.

Do you require breakfast
service?

Yes.

I recommend hotel B.

Great. Thank you.

(d) A Cooperative Retrieval Framework

The main challenges here could be summarized into two aspects. One is about the system design (i.e., how to bridge querying attributes and
querying items), and the other one is about the methodology design (i.e., how to develop a unified metric for evaluations of attributes and items).

For the system design, our idea only needs the API of the conversational model and the API of the recommender model For the methodology
design, our idea is to define a new evaluation metric called certainty gain over each possible item and attribute.

• (a) Since our method only requires API of either model, the recommender model could be offline tuned with historical logs of users while the
conversational model could be any of existing large language model (because many best-of-class large language models are only accessible
through API).

• (b) We define uncertainty as the summation of the remaining estimated relevance scores, and then we can derive certainty gain as the change
of querying each attribute or each item. Based on this, we construct an online decision tree algorithm, which can be built in a non-parametric
style. Hence, the choice of each item or each query has its own theoretical support.

Query Hotel A

Query Hotel C

5

3

5

3

Y Y

N

Y

N

Y

N

N

Recom
m

ender
System

B

C

D

A

(a) Matrix of Candidate Items with Offline
Estimated Relevance Scores My offline estimated relevance

scores are: Hotel A is 0.1, Hotel B
is 0.4, Hotel C is 0.4, Hotel D is 0.1.

Do you require Breakfast Service?

Yes.

I recommend Hotel B for you.

Great. Thank you.

Co
nv

er
sa

tio
na

l
Ag

en
t

0.1

0.4

0.4

0.1

Query Breakfast Service

Query Hotel B
B C

Yes No

Yes

A

No

Query Hotel D
D

NoCheers!

Yes

Cheers!

Yes

Cheers! No Item
Found

No Yes

Cheers!
No Item
Found

No

An Example of CORE: an Offline-training and
Online-checking Framework

I build an online decision tree
according to your estimation.

I will offline update estimations for
Hotel A, Hotel B, Hotel C, Hotel D.

(b) Online Decision Tree to Decide What to
Query (Either an Attribute or an Item)

Our key idea is to define the uncertainty as the summation of the relevance scores are still unchecked. Then, it
is easily to derive the certainty gain of querying each attribute or item as the relevance scores we can removed
by querying each attribute or item.

As a consequence, our model is using the recommender systems as an offline estimations (estimating the relevance scores according to the user‘s
historical data as the prior) while using the conversational agent as an online checker (checking whether our offline estimations fit the user
online preference). Here, large language models play two roles: (i) answer extractor: encoding the context of conversations and (ii) question
generator: generating new conversation turns.

Empirical Evidence

Our paper lists two separate configurations in terms of querying attributes: one is directly
querying attribute IDs (e.g., querying a user what level of hotel she prefers), while the other
one is query attribute values (e.g., querying a user whether she prefers hotels with level 3).

Therefore, the resulting online decision tree algorithm is to greedily choice an attribute or an item that can
maximize the certainty gain: Concretely, the formulation of querying

an attribute can be written as: where 𝑤! = 𝑤!∗ means

that when querying 𝑎, the user’s answer (represented by 𝑤!∗ is 𝑤!).

The formulation of querying an item is
where 𝑎 ∈ 𝒱∗ means that queried 𝑎 is a target
item.

Paper Link Project Link

Links

