Lending Interaction Wings to Recommender Systems with Conversational Agents
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Our main idea is to bridge the conversational model’s ability of online querying user preference on each attribute and the recommendation
model’s ability of offline estimating user interest for each item, allowing the whole system to query either an attribute or an item to users.

.

Challenges

The main challenges here could be summarized into two aspects. One is about the system design (i.e., how to bridge querying attributes and
querying items), and the other one is about the methodology design (i.e., how to develop a unified metric for evaluations of attributes and items).

* (a) Prior literature directly combine the conversational models and the recommender models with a reinforcement learning based framework.
However, reinforcement learning based methods mainly suffer from data insufficiency problem and their training procedure usually requires a
large amount of data.

* (b) Previous solution for determining whether items or attributes is to establish a new neural network as a controller to control when to use the

recommender component and when to apply the conversational component. However, they lack a unified metric to mathematically measure
whether to query an item or an attribute in each case.

Pros of Our Idea

For the system design, our idea only needs the API of the conversational model and the API of the recommender model For the methodology
design, our idea is to define a new evaluation metric called certainty gain over each possible item and attribute.

(a) Since our method only requires API of either model, the recommender model could be offline tuned with historical logs of users while the
conversational model could be any of existing large language model (because many best-of-class large language models are only accessible
through API).

* (b) We define uncertainty as the summation of the remaining estimated relevance scores, and then we can derive certainty gain as the change
of querying each attribute or each item. Based on this, we construct an online decision tree algorithm, which can be built in a non-parametric
style. Hence, the choice of each item or each query has its own theoretical support.

As a consequence, our model is using the recommender systems as an offline estimations (estimating the relevance scores according to the user’s
historical data as the prior) while using the conversational agent as an online checker (checking whether our offline estimations fit the user
online preference). Here, large language models play two roles: (i) answer extractor: encoding the context of conversations and (ii) question
generator: generating new conversation turns.

Our Framework (CORE)

An Example of CORE: an Offline-training and
Online-checking Framework
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relevance score estimator (colored in green), while a conversational agent acts as an online relevance score
checker (colored in blue). Concretely, given a matrix of candidate items, as shown in (a), the recommender
system could offline assign an estimated relevance score to each item, and then the conversational agent would
online check these scores by querying either items or attributes, depicted in (b).

12: Update Wgg(-) using data in D. > Offline-Training

Empirical Evidence

Our key idea is to define the uncertainty as the summation of the relevance scores are still unchecked. Then, it
is easily to derive the certainty gain of querying each attribute or item as the relevance scores we can removed

Table 2: Results comparison of querying attribute values on tabular datasets. See Table A2 for the full version.
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high latency and computation costs, the objective of Wq(+) can be expressed as:
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where K is the number of turns, and W7 means that the recommender system is frozen. To this end,
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If you have any question, please feel free to contact Jiarui Jin (jinjiarui97@gmail.com)



