
Apex Data & Knowledge Management Lab

Shanghai Jiao Tong University

A Deep Recurrent Survival Model for 
Unbiased Ranking

Jiarui Jin1, Yuchen Fang1, Weinan Zhang1, Kan Ren2, Guorui Zhou3,
Jian Xu3, Yong Yu1, Jun Wang4, Xiaoqiang Zhu3, Kun Gai3

1Shanghai Jiao Tong University, 2Microsoft Research,
3Alibaba Group, 4University College London

Slides: https://jiaruijin.com/publication/files/sigir20_oral.pdf



Content
• Problem Background
• Unbiased Ranking
• Current Challenges

• Architecture
• Deep Recurrent Survival Model
• Point-wise Loss Function
• Pair-wise Loss Function

• Experiment
• Conclusion

Alibaba Group Apex Data & Knowledge Management Lab



Content
• Problem Background
• Unbiased Ranking
• Current Challenges

• Architecture
• Deep Recurrent Survival Model
• Point-wise Loss Function
• Pair-wise Loss Function

• Experiment
• Conclusion

Alibaba Group Apex Data & Knowledge Management Lab



Explicit & Implicit Feedback
• Explicit Feedback

• score (relevance)
• predict relevance probability
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Figure: IMDB Movie

relevance𝑃(𝑟)

query

Alibaba Group Apex Data & Knowledge Management Lab

𝑞



Explicit & Implicit Feedback
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• Implicit Feedback
• click probability, observe probability
• predict ?

Figure: Google
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Position Bias
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Search Tea• Traditional Ranking
• information we have: click, observe
• predict click and rank click probability𝑃(𝑐)
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Position Bias

• Unbiased Ranking
• information we have: click, observe
• information we need: relevance probability
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Search Tea• Traditional Ranking
• information we have: click, observe
• predict click and rank click probability𝑃(𝑐)

• Position Bias
• item at low position is not likely to be

observed and, of course, not be clicked

𝑃(𝑟)

Figure: Illustration of position bias
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Unbiased Ranking
• User Browsing Behavior Model

• provides several basic assumptions about user browsing behavior.
• [Thorsten Joachims, et al.] only model user behavior patterns

without simultaneously sufficient optimization for ranking
algorithm.

• Counterfual Learning Framework
• treats the position bias as the counterfactual factor.
• debiases the user feedbacks through inverse propensity weighting.
• ignores the contextual information of the given ranking list, e.g.,

the content of the previous items may influence the observation
of the next item.
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Ref: Thorsten Joachims, et al. Unbiased learning-to-rank with biased feedback. WSDM, 2017.



Current Challenges
may stop browsing by interruption or end the search session due
to lack of interest, which leaves many queries without any user
click behavior, often referred as non-click queries. It is imprac-
tical to mine click patterns in these non-click queries. However,
these queries contain large amount of observe patterns, e.g., users
are often impatient and only observe several top documents when
selecting daily items such as fruits; while becoming patient and
browse several sessions before click when selecting luxury items
such as phones. Di�erent from recent investigations on abandoned
queries, de�ned as Web search queries without hyperlink clicks,
we here mainly focus on mining observe patterns instead of distin-
guishing bad and good abandonment [27, 36]. (ii) When the user
scrolls down the page and observes the presented items, the system
may track (through check points) that the user has observed until
the last position of the screen. However, this may not be true since
the user would have stopped and lost her attention before checking
the items on the last positions. It is not realistic to set eyetracking
for each user during each of her visit [20]. Hence, the tracking
logs of the user browsing history cannot truly tell that the users
are actually checking the contents, and we called these noisy logs
untrusted observations, as Figure 1 shows.

Based on the above analysis, when designing unbiased learning-
to-rank algorithm, the current state-of-the-art methods have not
well solved, even may not been aware of, the following challenges,
which we address in this paper: (C1) The user behaviors contain
various and highly correlated patterns based on the contextual
information. (C2) There are large scale of latent observe patterns
hidden in the non-click queries. (C3) The untrusted observa-
tion, another unsolved issue, is caused by limitation of tracking
logs.

To tackle these challenges, we propose a novel framework called
deep recurrent survival ranking (DRSR) to formulate the unbiased
learning-to-rank task as to estimate the probability distribution of
user’s conditional click rate. To capture user behavior pattern, we
combine survival model and recurrent neural network (RNN) in
DRSR framework. Speci�cally, the RNN architecture incorporates
all the top-down contents in the ranking list as contextual informa-
tion, while the survival model derives the joint probability of user
behavior via the probability chain rule, which enables modeling
both observed and censored user behavior patterns (C1). We then
assume that a user’s favored documents in the non-click queries
could hide in unobserved ones out of browsing scope. This is similar
to those patients who leave the hospital and die out of investiga-
tion period. Hence, we can leverage survival analysis techniques
[8, 22, 32] via treating non-click logs as censored data of clicked
ones where the censorship occurs in the click behavior (C2). In
seeking a proper way to measure relevance for untrusted observa-
tion, we model conditional probability and design a novel objective
function to learn relative relevance between trusted and untrusted
feedbacks in pair-wise setting (C3).

The major contributions of this paper can be outlined as follows.
• We propose an innovative framework to jointly capture the
correlation of user behaviors and train an unbiased rank with
contextual information of the rank list.

• We incorporate cascade model with survival analysis to deeply
mine hidden user observe patterns in non-click queries.

Figure 1: Illustration of user various behaviors (i.e., click and
non-click case) when browsing document list as shown in
the left side. Notations are provided in the right side.

• We provide a Pairwsie Debiasing training scheme to model rela-
tive relevance between trusted and untrusted observations.
Extensive experiments on Yahoo search engine and Alibaba rec-

ommender system datasets demonstrate the superiority of DRSR
over state-of-the-arts. To the best of our knowledge, in the unbi-
ased learning-to-rank task, it is the �rst work providing adaptive
user behavior modeling using contextual information with survival
analysis.

2 RELATEDWORK

Unbiased Learning to Rank. Learning to rank [29] is a funda-
mental technique for information systems, such as search engine,
recommender system and sponsored search advertising. There are
two streams of unbiased learning to rankmethodologies. One school
is based on some basic assumptions about the user browsing be-
haviors [7, 10, 38, 39]. These models maximize the likelihood of the
observations in the history data collected from the user browsing
logs. Recently, Fang et al. [12] extended position-based model and
proposed an e�ective estimator based on invention harvesting. As
is discussed in [21], these model only model user behavior patterns
without su�cient optimization for learning to rank problem. The
other school derived from counterfactual learning [21, 43] which
treats the click bias as the counterfactual factor [35] and debias the
user feedback through inverse propensity weighting [42]. Recently,
Ai et al. [2] and Hu et al. [17] respectively proposed to employ
the dual learning method for jointly estimating position bias and
training a ranker. However, these prior works often ignore the rich
contextual information in query and omit user’s various behaviors
except click. In this paper, we propose an innovative approach a
novel cascade model adaptive in both point-wise and pair-wise set-
ting. In addition to taking joint consideration of click and non-click
data via survival analysis, we also model the whole ranking list
through recurrent neural network.
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Figure: Illustration of user various behaviors (i.e., click and non-click case) when
browsing document list as shown in the left side. Notations are provided in the right
side.

(C1) the user behaviors
contain various and
highly correlated
patterns based on the
contextual information.



Current Challenges
may stop browsing by interruption or end the search session due
to lack of interest, which leaves many queries without any user
click behavior, often referred as non-click queries. It is imprac-
tical to mine click patterns in these non-click queries. However,
these queries contain large amount of observe patterns, e.g., users
are often impatient and only observe several top documents when
selecting daily items such as fruits; while becoming patient and
browse several sessions before click when selecting luxury items
such as phones. Di�erent from recent investigations on abandoned
queries, de�ned as Web search queries without hyperlink clicks,
we here mainly focus on mining observe patterns instead of distin-
guishing bad and good abandonment [27, 36]. (ii) When the user
scrolls down the page and observes the presented items, the system
may track (through check points) that the user has observed until
the last position of the screen. However, this may not be true since
the user would have stopped and lost her attention before checking
the items on the last positions. It is not realistic to set eyetracking
for each user during each of her visit [20]. Hence, the tracking
logs of the user browsing history cannot truly tell that the users
are actually checking the contents, and we called these noisy logs
untrusted observations, as Figure 1 shows.

Based on the above analysis, when designing unbiased learning-
to-rank algorithm, the current state-of-the-art methods have not
well solved, even may not been aware of, the following challenges,
which we address in this paper: (C1) The user behaviors contain
various and highly correlated patterns based on the contextual
information. (C2) There are large scale of latent observe patterns
hidden in the non-click queries. (C3) The untrusted observa-
tion, another unsolved issue, is caused by limitation of tracking
logs.

To tackle these challenges, we propose a novel framework called
deep recurrent survival ranking (DRSR) to formulate the unbiased
learning-to-rank task as to estimate the probability distribution of
user’s conditional click rate. To capture user behavior pattern, we
combine survival model and recurrent neural network (RNN) in
DRSR framework. Speci�cally, the RNN architecture incorporates
all the top-down contents in the ranking list as contextual informa-
tion, while the survival model derives the joint probability of user
behavior via the probability chain rule, which enables modeling
both observed and censored user behavior patterns (C1). We then
assume that a user’s favored documents in the non-click queries
could hide in unobserved ones out of browsing scope. This is similar
to those patients who leave the hospital and die out of investiga-
tion period. Hence, we can leverage survival analysis techniques
[8, 22, 32] via treating non-click logs as censored data of clicked
ones where the censorship occurs in the click behavior (C2). In
seeking a proper way to measure relevance for untrusted observa-
tion, we model conditional probability and design a novel objective
function to learn relative relevance between trusted and untrusted
feedbacks in pair-wise setting (C3).

The major contributions of this paper can be outlined as follows.
• We propose an innovative framework to jointly capture the
correlation of user behaviors and train an unbiased rank with
contextual information of the rank list.

• We incorporate cascade model with survival analysis to deeply
mine hidden user observe patterns in non-click queries.

Figure 1: Illustration of user various behaviors (i.e., click and
non-click case) when browsing document list as shown in
the left side. Notations are provided in the right side.

• We provide a Pairwsie Debiasing training scheme to model rela-
tive relevance between trusted and untrusted observations.
Extensive experiments on Yahoo search engine and Alibaba rec-

ommender system datasets demonstrate the superiority of DRSR
over state-of-the-arts. To the best of our knowledge, in the unbi-
ased learning-to-rank task, it is the �rst work providing adaptive
user behavior modeling using contextual information with survival
analysis.

2 RELATEDWORK

Unbiased Learning to Rank. Learning to rank [29] is a funda-
mental technique for information systems, such as search engine,
recommender system and sponsored search advertising. There are
two streams of unbiased learning to rankmethodologies. One school
is based on some basic assumptions about the user browsing be-
haviors [7, 10, 38, 39]. These models maximize the likelihood of the
observations in the history data collected from the user browsing
logs. Recently, Fang et al. [12] extended position-based model and
proposed an e�ective estimator based on invention harvesting. As
is discussed in [21], these model only model user behavior patterns
without su�cient optimization for learning to rank problem. The
other school derived from counterfactual learning [21, 43] which
treats the click bias as the counterfactual factor [35] and debias the
user feedback through inverse propensity weighting [42]. Recently,
Ai et al. [2] and Hu et al. [17] respectively proposed to employ
the dual learning method for jointly estimating position bias and
training a ranker. However, these prior works often ignore the rich
contextual information in query and omit user’s various behaviors
except click. In this paper, we propose an innovative approach a
novel cascade model adaptive in both point-wise and pair-wise set-
ting. In addition to taking joint consideration of click and non-click
data via survival analysis, we also model the whole ranking list
through recurrent neural network.
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Figure: Illustration of user various behaviors (i.e., click and non-click case) when
browsing document list as shown in the left side. Notations are provided in the right
side.

(C2) There are large scale 
of  latent observe patterns 
hidden in the non-click 
queries. i.e., when the user 
starts a search with a query, 
she stop browsing by
interruption or end the 
search session due to lack 
of  interest, which leaves 
many queries without any 
user click behavior, often 
referred as non-click queries



Current Challenges
may stop browsing by interruption or end the search session due
to lack of interest, which leaves many queries without any user
click behavior, often referred as non-click queries. It is imprac-
tical to mine click patterns in these non-click queries. However,
these queries contain large amount of observe patterns, e.g., users
are often impatient and only observe several top documents when
selecting daily items such as fruits; while becoming patient and
browse several sessions before click when selecting luxury items
such as phones. Di�erent from recent investigations on abandoned
queries, de�ned as Web search queries without hyperlink clicks,
we here mainly focus on mining observe patterns instead of distin-
guishing bad and good abandonment [27, 36]. (ii) When the user
scrolls down the page and observes the presented items, the system
may track (through check points) that the user has observed until
the last position of the screen. However, this may not be true since
the user would have stopped and lost her attention before checking
the items on the last positions. It is not realistic to set eyetracking
for each user during each of her visit [20]. Hence, the tracking
logs of the user browsing history cannot truly tell that the users
are actually checking the contents, and we called these noisy logs
untrusted observations, as Figure 1 shows.

Based on the above analysis, when designing unbiased learning-
to-rank algorithm, the current state-of-the-art methods have not
well solved, even may not been aware of, the following challenges,
which we address in this paper: (C1) The user behaviors contain
various and highly correlated patterns based on the contextual
information. (C2) There are large scale of latent observe patterns
hidden in the non-click queries. (C3) The untrusted observa-
tion, another unsolved issue, is caused by limitation of tracking
logs.

To tackle these challenges, we propose a novel framework called
deep recurrent survival ranking (DRSR) to formulate the unbiased
learning-to-rank task as to estimate the probability distribution of
user’s conditional click rate. To capture user behavior pattern, we
combine survival model and recurrent neural network (RNN) in
DRSR framework. Speci�cally, the RNN architecture incorporates
all the top-down contents in the ranking list as contextual informa-
tion, while the survival model derives the joint probability of user
behavior via the probability chain rule, which enables modeling
both observed and censored user behavior patterns (C1). We then
assume that a user’s favored documents in the non-click queries
could hide in unobserved ones out of browsing scope. This is similar
to those patients who leave the hospital and die out of investiga-
tion period. Hence, we can leverage survival analysis techniques
[8, 22, 32] via treating non-click logs as censored data of clicked
ones where the censorship occurs in the click behavior (C2). In
seeking a proper way to measure relevance for untrusted observa-
tion, we model conditional probability and design a novel objective
function to learn relative relevance between trusted and untrusted
feedbacks in pair-wise setting (C3).

The major contributions of this paper can be outlined as follows.
• We propose an innovative framework to jointly capture the
correlation of user behaviors and train an unbiased rank with
contextual information of the rank list.

• We incorporate cascade model with survival analysis to deeply
mine hidden user observe patterns in non-click queries.
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tive relevance between trusted and untrusted observations.
Extensive experiments on Yahoo search engine and Alibaba rec-

ommender system datasets demonstrate the superiority of DRSR
over state-of-the-arts. To the best of our knowledge, in the unbi-
ased learning-to-rank task, it is the �rst work providing adaptive
user behavior modeling using contextual information with survival
analysis.

2 RELATEDWORK

Unbiased Learning to Rank. Learning to rank [29] is a funda-
mental technique for information systems, such as search engine,
recommender system and sponsored search advertising. There are
two streams of unbiased learning to rankmethodologies. One school
is based on some basic assumptions about the user browsing be-
haviors [7, 10, 38, 39]. These models maximize the likelihood of the
observations in the history data collected from the user browsing
logs. Recently, Fang et al. [12] extended position-based model and
proposed an e�ective estimator based on invention harvesting. As
is discussed in [21], these model only model user behavior patterns
without su�cient optimization for learning to rank problem. The
other school derived from counterfactual learning [21, 43] which
treats the click bias as the counterfactual factor [35] and debias the
user feedback through inverse propensity weighting [42]. Recently,
Ai et al. [2] and Hu et al. [17] respectively proposed to employ
the dual learning method for jointly estimating position bias and
training a ranker. However, these prior works often ignore the rich
contextual information in query and omit user’s various behaviors
except click. In this paper, we propose an innovative approach a
novel cascade model adaptive in both point-wise and pair-wise set-
ting. In addition to taking joint consideration of click and non-click
data via survival analysis, we also model the whole ranking list
through recurrent neural network.
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Figure: Illustration of user various behaviors (i.e., click and non-click case) when
browsing document list as shown in the left side. Notations are provided in the right
side.

(C3) When the user scrolls 
down the page and 
observes the presented 
items, the tracking logs
record user observations 
until the last position. 
However, this may not be 
true since the user may stop 
and lost her attention 
before that. We called these 
noisy logs untrusted 
observations.
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Motivation
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Figure 2: Illustration of Deep Recurrent Survival Ranking model. Note that we mine click patterns in click case and observe
patterns in both click and non-click cases.

1|oi = 1;x) · P(oi = 1|x) , where we can de�ne relevance as

P(ri = 1|x) ⌘ P(ci = 1|oi = 1;x) = P(ci = 1|x)
P(oi = 1|x) . (3)

The task of biased learning-to-rank is to estimate click and return
a ranking list according to P(ci = 1|x), while the aim of unbiased
learning to rank is to derive relevance from click data and provide
a ranking list according to P(ri = 1|x).

Many click models [7, 10, 15] have investigated how to model
the impact from previous clicked document. To simplify, we only
study the session with single click here. One can easily extend
into multiple click session via truncating multiple one into several
single ones. Actually, this sequence truncation method, over the
sequential data with multiple events, has been widely used in many
works covering various �elds such as recommender system [19],
conversion attribution [31] and survival analysis [32], which trun-
cates the raw sequences according to the events of interest (i.e.,
click in our case).

4 METHODOLOGY
4.1 Survival Model
In the �eld of survival analysis [28, 32], we investigate the prob-
ability of death event z happening at each time. Analogously, we
here investigate the probability of click event z happening at each
document. Let z = i denote that event z happens at i-th document
di , and z � i denote that event z happens after i-th document di .
We then analyze the patient’s investigation on underlying survival
period, where a patient will keep ‘survival’ until she leaves hospital
or meets ‘death’. Actually, user behaviors on browsing are very
similar, where a user will keep observing until she leaves due to
lost of interest or clicks due to success in �nding a worthwhile
document. Hence, we �nd that click at each item corresponds to
the ‘death’ status of one patient [46], and de�ne click probability,
the probability density function (P.D.F.) of click occurring at i-th
document di , as

pi ⌘ P(ci = 1) ⌘ P(z = i), (4)

where z denotes the position of clicked document. Also, we see
that observe at each item corresponds to the ‘survival’ status of one
patent [46]. Hence, we can derive the observe probability at i-th
document di as the cumulative distribution function (C.D.F.), since

user will keep browsing until she �nds and clicks a favored one, as

S(i) ⌘ P(oi = 1) ⌘ P(z � i) =
’
� �i

P(z = � ), (5)

which represents the probability of the click event occurring after
document di , i.e., probability of observing di . Then it’s straight-
forward to de�ne the unobserve probability, i.e., the probability of
event occurring before the document di , as

W (i) ⌘ P(oi = 0) ⌘ P(z < i) =
’
� <i

P(z = � ). (6)

Hence, click probability function at the i-th document can be calcu-
lated as

pi = P(z = i) =W (i + 1) �W (i)
= [1 � S(i + 1)] � [1 � S(i)]
= S(i) � S(i + 1).

(7)

We de�ne the relevance probability as conditional click probability
according to Eq. (3), the click probability at document di given that
the previous document di�1 is observed, as

hi ⌘ P(ri = 1) = P(ci = 1)
P(oi = 1) =

P(z = i)
P(z � i) =

pi
S(i) , (8)

which also means the probability that the click occurring docu-
ment z lies at di given the condition that z is larger than the last
observation boundary.

For those non-click logs caused by user leave behavior, we as-
sume that user’s favored document (i.e., click) hides in the future
session. A similar scenario can be found in survival analysis when
a patient leaves hospital and �nally meets ‘death’ sometime after
investigation period. Hence, we can regard these non-click logs as
the censored clicked queries where censorship occurs in click. Note
that the data logs of unbiased learning-to-rank are represented as
a set of triple {(x , z, l)}, where x is the feature of the item and l is
the browse length. Here z is the position of clicked document dz if
the user clicks in this browsing behavior, but z is unknown (and we
marked z as null) in those non-click browsing histories. Di�erent
from traditional causality models [7, 9], survival model is able to
capture observe patterns in both click and non-click queries.

4.2 Deep Recurrent Survival Ranking Model
Based on survival model, we introduce our DRSR based on recurrent
neural network f� with the parameter � , which captures the sequen-
tial patterns for conditional click probability hi at every document

death probability survival probability

document list

time

Figure: Illustration of Deep Recurrent Survival Ranking Model. Note that we mine click
patterns in click case and observe patterns in both click and non-click cases.



Survival Model

• click probability (death probability), the probability density function 
(P.D.F.) of  click occurring at 𝑖-th document

𝑝! = 𝑃 𝑐! = 1 = 𝑃(𝑧 = 𝑖)
• observe probability (survival probability), the cumulative distribution 

function (C.D.F.), since user will keep browsing until she finds and 
clicks a favored one

𝑆 𝑖 = 𝑃 𝑜! = 1 =.
"#!

𝑃(𝑧 = 𝜏)

• relevance probability, the conditional click probability, the click 
probability at document given that the document is observed

ℎ! = 𝑃 𝑟! = 1 =
𝑃 𝑐! = 1
𝑃 𝑜! = 1 =

𝑃 𝑧 = 𝑖
𝑃 𝑧 ≥ 𝑖 =

𝑝!
𝑆!
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Deep Recurrent Survival Model
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RNN function

• relevance probability
ℎ! = 𝑃(𝑧 = 𝑖|𝑧 ≥ 𝑖, 𝑥; 𝜃) = 𝑓$ (𝑥! |𝑏!%&)

• observe probability (survival probability)
𝑆 𝑖|𝑥; 𝜃 = 𝑃 𝑖 ≤ 𝑧 = 𝑃 𝑧 ≠ 1, 𝑧 ≠ 2, 𝑧 ≠ 3,… , 𝑧 ≠ 𝑖 − 1 𝑥; 𝜃

= 𝑃 𝑧 ≠ 1 𝑥&; 𝜃 ⋅ 𝑃 𝑧 ≠ 2 𝑧 ≠ 1, 𝑥'; 𝜃 ⋯𝑃(𝑧
≠ 𝑖 − 1 𝑧 ≠ 1,⋯ 𝑧 ≠ 𝑖 − 2 𝑥!%&; 𝜃)

= A
":")!

1 − 𝑃 𝑧 = 𝜏 𝑧 ≥ 𝜏, 𝑥"; 𝜃 = A
":")!

(1 − ℎ")

Figure 2: Illustration of Deep Recurrent Survival Ranking model. Note that we mine click patterns in click case and observe
patterns in both click and non-click cases.

1|oi = 1;x) · P(oi = 1|x) , where we can de�ne relevance as

P(ri = 1|x) ⌘ P(ci = 1|oi = 1;x) = P(ci = 1|x)
P(oi = 1|x) . (3)

The task of biased learning-to-rank is to estimate click and return
a ranking list according to P(ci = 1|x), while the aim of unbiased
learning to rank is to derive relevance from click data and provide
a ranking list according to P(ri = 1|x).

Many click models [7, 10, 15] have investigated how to model
the impact from previous clicked document. To simplify, we only
study the session with single click here. One can easily extend
into multiple click session via truncating multiple one into several
single ones. Actually, this sequence truncation method, over the
sequential data with multiple events, has been widely used in many
works covering various �elds such as recommender system [19],
conversion attribution [31] and survival analysis [32], which trun-
cates the raw sequences according to the events of interest (i.e.,
click in our case).

4 METHODOLOGY
4.1 Survival Model
In the �eld of survival analysis [28, 32], we investigate the prob-
ability of death event z happening at each time. Analogously, we
here investigate the probability of click event z happening at each
document. Let z = i denote that event z happens at i-th document
di , and z � i denote that event z happens after i-th document di .
We then analyze the patient’s investigation on underlying survival
period, where a patient will keep ‘survival’ until she leaves hospital
or meets ‘death’. Actually, user behaviors on browsing are very
similar, where a user will keep observing until she leaves due to
lost of interest or clicks due to success in �nding a worthwhile
document. Hence, we �nd that click at each item corresponds to
the ‘death’ status of one patient [46], and de�ne click probability,
the probability density function (P.D.F.) of click occurring at i-th
document di , as

pi ⌘ P(ci = 1) ⌘ P(z = i), (4)

where z denotes the position of clicked document. Also, we see
that observe at each item corresponds to the ‘survival’ status of one
patent [46]. Hence, we can derive the observe probability at i-th
document di as the cumulative distribution function (C.D.F.), since

user will keep browsing until she �nds and clicks a favored one, as

S(i) ⌘ P(oi = 1) ⌘ P(z � i) =
’
� �i

P(z = � ), (5)

which represents the probability of the click event occurring after
document di , i.e., probability of observing di . Then it’s straight-
forward to de�ne the unobserve probability, i.e., the probability of
event occurring before the document di , as

W (i) ⌘ P(oi = 0) ⌘ P(z < i) =
’
� <i

P(z = � ). (6)

Hence, click probability function at the i-th document can be calcu-
lated as

pi = P(z = i) =W (i + 1) �W (i)
= [1 � S(i + 1)] � [1 � S(i)]
= S(i) � S(i + 1).

(7)

We de�ne the relevance probability as conditional click probability
according to Eq. (3), the click probability at document di given that
the previous document di�1 is observed, as

hi ⌘ P(ri = 1) = P(ci = 1)
P(oi = 1) =

P(z = i)
P(z � i) =

pi
S(i) , (8)

which also means the probability that the click occurring docu-
ment z lies at di given the condition that z is larger than the last
observation boundary.

For those non-click logs caused by user leave behavior, we as-
sume that user’s favored document (i.e., click) hides in the future
session. A similar scenario can be found in survival analysis when
a patient leaves hospital and �nally meets ‘death’ sometime after
investigation period. Hence, we can regard these non-click logs as
the censored clicked queries where censorship occurs in click. Note
that the data logs of unbiased learning-to-rank are represented as
a set of triple {(x , z, l)}, where x is the feature of the item and l is
the browse length. Here z is the position of clicked document dz if
the user clicks in this browsing behavior, but z is unknown (and we
marked z as null) in those non-click browsing histories. Di�erent
from traditional causality models [7, 9], survival model is able to
capture observe patterns in both click and non-click queries.

4.2 Deep Recurrent Survival Ranking Model
Based on survival model, we introduce our DRSR based on recurrent
neural network f� with the parameter � , which captures the sequen-
tial patterns for conditional click probability hi at every document
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Figure 2: Illustration of Deep Recurrent Survival Ranking model. Note that we mine click patterns in click case and observe
patterns in both click and non-click cases.

1|oi = 1;x) · P(oi = 1|x) , where we can de�ne relevance as

P(ri = 1|x) ⌘ P(ci = 1|oi = 1;x) = P(ci = 1|x)
P(oi = 1|x) . (3)

The task of biased learning-to-rank is to estimate click and return
a ranking list according to P(ci = 1|x), while the aim of unbiased
learning to rank is to derive relevance from click data and provide
a ranking list according to P(ri = 1|x).

Many click models [7, 10, 15] have investigated how to model
the impact from previous clicked document. To simplify, we only
study the session with single click here. One can easily extend
into multiple click session via truncating multiple one into several
single ones. Actually, this sequence truncation method, over the
sequential data with multiple events, has been widely used in many
works covering various �elds such as recommender system [19],
conversion attribution [31] and survival analysis [32], which trun-
cates the raw sequences according to the events of interest (i.e.,
click in our case).

4 METHODOLOGY
4.1 Survival Model
In the �eld of survival analysis [28, 32], we investigate the prob-
ability of death event z happening at each time. Analogously, we
here investigate the probability of click event z happening at each
document. Let z = i denote that event z happens at i-th document
di , and z � i denote that event z happens after i-th document di .
We then analyze the patient’s investigation on underlying survival
period, where a patient will keep ‘survival’ until she leaves hospital
or meets ‘death’. Actually, user behaviors on browsing are very
similar, where a user will keep observing until she leaves due to
lost of interest or clicks due to success in �nding a worthwhile
document. Hence, we �nd that click at each item corresponds to
the ‘death’ status of one patient [46], and de�ne click probability,
the probability density function (P.D.F.) of click occurring at i-th
document di , as

pi ⌘ P(ci = 1) ⌘ P(z = i), (4)

where z denotes the position of clicked document. Also, we see
that observe at each item corresponds to the ‘survival’ status of one
patent [46]. Hence, we can derive the observe probability at i-th
document di as the cumulative distribution function (C.D.F.), since

user will keep browsing until she �nds and clicks a favored one, as

S(i) ⌘ P(oi = 1) ⌘ P(z � i) =
’
� �i

P(z = � ), (5)

which represents the probability of the click event occurring after
document di , i.e., probability of observing di . Then it’s straight-
forward to de�ne the unobserve probability, i.e., the probability of
event occurring before the document di , as

W (i) ⌘ P(oi = 0) ⌘ P(z < i) =
’
� <i

P(z = � ). (6)

Hence, click probability function at the i-th document can be calcu-
lated as

pi = P(z = i) =W (i + 1) �W (i)
= [1 � S(i + 1)] � [1 � S(i)]
= S(i) � S(i + 1).

(7)

We de�ne the relevance probability as conditional click probability
according to Eq. (3), the click probability at document di given that
the previous document di�1 is observed, as

hi ⌘ P(ri = 1) = P(ci = 1)
P(oi = 1) =

P(z = i)
P(z � i) =

pi
S(i) , (8)

which also means the probability that the click occurring docu-
ment z lies at di given the condition that z is larger than the last
observation boundary.

For those non-click logs caused by user leave behavior, we as-
sume that user’s favored document (i.e., click) hides in the future
session. A similar scenario can be found in survival analysis when
a patient leaves hospital and �nally meets ‘death’ sometime after
investigation period. Hence, we can regard these non-click logs as
the censored clicked queries where censorship occurs in click. Note
that the data logs of unbiased learning-to-rank are represented as
a set of triple {(x , z, l)}, where x is the feature of the item and l is
the browse length. Here z is the position of clicked document dz if
the user clicks in this browsing behavior, but z is unknown (and we
marked z as null) in those non-click browsing histories. Di�erent
from traditional causality models [7, 9], survival model is able to
capture observe patterns in both click and non-click queries.

4.2 Deep Recurrent Survival Ranking Model
Based on survival model, we introduce our DRSR based on recurrent
neural network f� with the parameter � , which captures the sequen-
tial patterns for conditional click probability hi at every document
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Figure 3: Intuition behind C.D.F. losses. The left and right
sub-�gures denote click and non-click cases respectively.

di . This structure also enables DRSR to take contextual information
(i.e., observed documents) into consideration. The detailed struc-
ture of DRSR is illustrated in Figure 2. At each document di , the
i-th RNN cell predicts the conditional click probability hi given the
document feature xi as

hi = P(z = i | z � i,x ;� ) = f� (xi | bi�1), (9)

where f� is the RNN function taking x as input and hi as output.
bi�1 is the hidden vector calculated from the last RNN cell. In our
paper we implement the RNN function as a standard LSTM unit
[16], which has been widely used in sequence data modeling.

From Eqs. (6), (5), (8) and (9), we can easily derive the observe
probability functionW (i) and the unobserve probability function
S(i) as

S(i |x ;� ) = P(i  z |x ;� ) = P(z , 1, z , 2, . . . , z , i � 1|x ;� )
= P(z , 1|x1;� ) · P(z , 2|z , 1,x2;� ) · · ·
· P(z , i � 1|z , 1, . . . , z , i � 2,xi�1;� )

=
÷
� :� <i

[1 � P(z = � |z � � ,x� ;� )] =
÷
� :� <i

(1 � h� ),

(10)

W (i |x ;� ) = P(i > z |x ;� ) = 1 � S(i |x ;� ) = 1 �
÷
� :� <i

(1 � h� ). (11)

Here we use probability chain rule to calculate unobserve probability
S(i) at the given document di through multiplying the conditional
unclick probability (1 � h� ), i.e., inverse of the conditional click
probability.

Moreover, taking Eqs. (7) and (8) into consideration, the probabil-
ity of clicked document dz directly lying at di , i.e., click probability
at document di can written as

pi = P(z = i |x ;� ) = hi
÷
� :� <i

(1 � h� ). (12)

4.3 Point-wise Loss Function
In point-wise setting, since there is no ground truth of either event
probability distribution or relevance information, here wemaximize
the log-likelihood over the empirical data distribution to learn our
deep model.

The �rst type of loss is based on the click probability (P.D.F.) and
it aims to minimize negative log-likelihood of the click document

dj over the clicked logs as

Lpoint(z) = �log
÷

(x ,z)2Dclick

P(z = j |x ;� ) = �log
÷

(x ,z)2Dclick

pj

= �log
÷

(x ,z)2Dclick

[hj
÷
� :� <i

(1 � h� )]

= �
’

(x ,z)2Dclick

[log hj +
’
� :� <i

log(1 � h� )],

(13)
where j is the position of true clicked document dj given the feature
vector x .

The second type of loss is based on the observe probability (C.D.F.).
There are two motivations about the second loss corresponding to
these two cases. Let z and l represent clicked document position
and browse length respectively. As is shown in Figure 3, the left
sub-�gure is the click case where z has been known and z  l ; The
right sub-�gure is the non-click case where z is unknown (censored)
but we only have the knowledge that z > l .

For the click cases as the left part of Figure 3, we need to “push
up” the observe probability for the document whose position is in
range of [0, l], while “pull down” the observe probability for the
document whose position is in range of [l ,1). Thus, on one hand,
we adopt the loss over the click cases that

Lclick = �log
÷

(x ,l )2Dclick

P(l � z |x ;� )

⇡ �log
÷

(x ,l )2Dclick

W (l |x ;� )

= �
’

(x ,l )2Dclick

log [1 �
÷
� :� <l

(1 � h� )].

(14)

As for the non-click cases in the right part of Figure 3, we just
need to “push up” the observe probability since we have no idea
about true click document but we only know that z > l . On the
other hand, we just adopt the loss over the non-click dataset as

Lnon-click = �log
÷

(x ,l )2Dnon-click

P(z > l |x ;� )

⇡ �log
÷

(x ,l )2Dnon-click

S(l |x ;� )

= �
’

(x ,l )2Dnon-click

’
� :� <l

log (1 � h� ).

(15)

4.4 Permutation Document Model
Di�erent from traditional pair-wise methods where binary classi�-
cation accompanied with logistic regression is proposed to model
relative relevance, as Figure 4 shows, we here model the relative rel-
evance via three conditional probabilities: click probability (P.D.F.):
(i) P(z = j |z � i) for positive document dj ; (ii) P(z = i |z � j)
for negative document di ; and observe probability (C.D.F.): (iii)
P(z � k |z � i) for untrusted document dk . As Figure 4 shows,
the �rst one indicates the probability of user clicking document dj
given she has browsed document di ; the second one represents how
likely user click document di given she has observed document dj ;
while the third one means the probability of user going on browsing
document dk after observing document di .

Figure: Iintuition behind C.D.F. losses. The left and right sub-figures denote click and non-
click cases respectively.

• observe probability (C.D.F.)
• push up the observe probability of document whose position in

range of [0, 𝑙], and pull down in range of [𝑙, ∞].
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Figure: Illustration of permutation document modeling, where documents here are sampled
from different subsets in the right side. Double sided arrow denotes exchange order operation.

It should be noted that only the �rst conditional probability is
accessible to be measured since we can only obtain original order 0
(o1 in Figure 4). In order to get rerank 1 (r1) and rerank 2 (r2), we
need to permute the documents. Recall that users often browse from
the top to bottom, which may result in that higher the document
ranked, more likely it to be clicked. We are able to move clicked
document dj forward since it will not change click behavior. By this
way, we obtain r1. Considering there may exist relevant documents
in those untrusted observations, we consider to move untrusted
document dk forward to get r2. Note that moving dk forward and
dj backward may change click behavior, we here model observe
probability instead. This technique to mine more potential order
based on an original order is inspired by XLNet [44], so we call it
permutation document modeling.

By this way, our model is able to (i) consider documents’ dis-
play order in pair-wise setting by modeling relative relevance with
conditional probability; (ii) take both trusted and untrusted observa-
tion into consideration; (iii) conduct training procedure with more
dependency pairs.

Figure 4: Illustration of permutation document modeling,
where documents here are sampled from di�erent subsets
in the right side. Double sided arrow denotes exchange or-
der operation.

4.5 Pair-wise Loss Functions
Di�erent from point-wise loss functions, pair-wise loss functions
can preserve relative information, e.g., relative relevance can be
drawn from user’s action to document dj given she has browsed
document di . There are three pair-wise loss functions for posi-
tive, negative and untrusted documents respectively based on the
analysis in Section 4.4.

In order to maximize log-likelihood of click probability (P.D.F.):
P(z = j |z � i), i.e., clicking relevant document dj after observing
irrelevant document di , we formulate the �rst pair-wise loss based
on o0 query in Figure 4 as

Lpair(o0) = �log
÷

(di ,dj )2Iq
P(z = j |z � i,x ;� )

= �log
÷

(di ,dj )2Iq

P(z = j |x ;� )
P(z � i)|x ;� ) = �log

÷
(di ,dj )2Iq

pj

S(i |x ;� )

= �
’

(di ,dj )2Iq
{[log hj

’
� :� <j

log(1 � h� )] �
’
� :� <i

log(1 � h� )}.

(16)

In r1 query, we need to minimize log-likelihood of click probability
(P.D.F.): P(z = i |z � j), i.e., clicking irrelevant document di after
observing relevant document dj and form the second pair-wise loss
function as

Lpair(r1) = log
÷

(di ,dj )2Iq
P(z = i |z � j,x ;� )

= log
÷

(di ,dj )2Iq

P(z = i |x ;� )
P(z � j)|x ;� ) = log

÷
(di ,dj )2Iq

pi
S(j |x ;� )

=
’

(di ,dj )2Iq
{[log hi

’
� :� <i

log(1 � h� )] �
’
� :� <j

log(1 � h� )}.

(17)
For r2 query, we measure the relative relevance between trusted

(i.e., relevant and irrelevant) and untrusted documents via user
observe behavior. Specially, we evaluate observe probability (C.D.F.):
P(z � k |z � i), i.e., probability of user going browsing dk after she
has observed di as

Lpair(r2) = �log
÷

(di ,dk )2Iq
P(z � k |z � i,x ;� )

= �log
÷

(di ,dk )2Iq

P(z � k |x ;� )
P(z � i |x ;� ) = �log

÷
(di ,dk )2Iq

S(k |x ;� )
S(i |x ;� )

= �
’

(di ,dk )2Iq
[
’

� :� <k
log (1 � h� ) �

’
� :� <i

log (1 � h� )].

(18)

4.6 Model Realization
In this section, we unscramble some intrinsic properties of our deep
model and analyze the model e�ciency in this section.

Properties of Loss Function. First of all, we take the view of click
prediction of our methodology. As is known that there is a click
status, i.e., an indicator of click event, for each sample as

� =

⇢1 if l � z

0 otherwise l < z.
(19)

Hence, taking Eqs. (14) and (15) altogether and we may �nd that
combination of Lclick and Lnon-click describes the classi�cation of
click status at document dl of each sample as

L2 = Lclick + Lnon-click

= �log
÷

(x ,l )2Dclick

P(l � z |x ;� ) � log
÷

(x ,l )2Dnon-click

P(z > l |x ;� )

⇡ �log
÷

(x ,l )2D
[W (l |x ;� )]� · [1 �W (l |x ;� )]1��

= �
’

(x ,l )2D
{� · logW (l |x ;� ) + (1 � �) · log [1 �W (l |x ;� )]},

(20)
which is the cross entropy loss for predicting click status at time t
given x over all the data D = Dclick [Dnon-click .

Combining all the objective functions and our goal is to minimize
the negative log-likelihood over all the data samples including both
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Experiment

[Regression-EM] [Xuanhui Wang, et al.] a regression-based EM method where position bias is estimated from regular production clicks.

[Dual Learning Algorithm] [Qingyao Ai, et al.] a dual learning framework jointly learning a ranker and debiasing click data.
[Ratio Debiasing] [Ziniu Hu, et al.] an unbiased pair-wise learning-to-rank based on inverse propensity weight.
[Point-wise Debiasing] our model in point-wise setting.

[Pair-wise Debiasing] our model in pair-wise setting.
[Click Data] the raw click data without debiasing to train the ranker.

[Labeled Data] the human annotated relevance labels without any bias.

Ref: Xuanhui Wang, et al. Position bias estimation for unbiased learning to rank in personal search. WSDM, 2018.
Ref: Qjngyao Ai, et al. Unbiased Learning to Rank with Unbiased Propensity Estimation. SIGIR, 2018.
Ref: Ziniu Hu, et al. Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm. WWW, 2019.

Table 2: Comparison of di�erent unbiased learning-to-rank methods under Yahoo Search Engine and Alibaba Recommender
System. CCM is utilized as click generation model. * indicates p-value < 0.001 in signi�cance test vs the best baseline.

Ranker Debiasing Method Yahoo Search Engine (CCM) Alibaba Recommender System (CCM)
MAP NDCG@1 NDCG@3 NDCG@5 MAP NDCG@1 NDCG@3 NDCG@5

DRSR (Ours)

Labeled Data 0.861 0.747 0.759 0.771 0.850 0.737 0.741 0.755
Pairwise Debiasing 0.842⇤ 0.719⇤ 0.721⇤ 0.737⇤ 0.831⇤ 0.684⇤ 0.685⇤ 0.707⇤
Pointwise Debiasing 0.839⇤ 0.713⇤ 0.717⇤ 0.730⇤ 0.830⇤ 0.682⇤ 0.684⇤ 0.706⇤
Regression-EM [43] 0.829 0.679 0.685 0.701 0.820 0.657 0.668 0.673

Click Data 0.817 0.636 0.652 0.667 0.810 0.613 0.627 0.658

LambdaMART

Labeled Data 0.854 0.745 0.745 0.757 0.847 0.729 0.732 0.743
Ratio Debiasing [17] 0.830 0.688 0.685 0.699 0.821 0.661 0.669 0.674
Regression-EM [43] 0.826 0.669 0.676 0.691 0.818 0.636 0.651 0.667

Click Data 0.813 0.628 0.646 0.673 0.804 0.603 0.618 0.646

DNN

Labeled Data 0.831 0.677 0.685 0.705 0.824 0.674 0.679 0.693
Dual Learning Algorithm [2] 0.825 0.672 0.678 0.691 0.814 0.629 0.647 0.674

Regression-EM [43] 0.823 0.665 0.669 0.687 0.813 0.628 0.645 0.672
Click Data 0.809 0.611 0.619 0.648 0.801 0.600 0.612 0.641

5.2 Compared Settings
We made comprehensive comparisons between our model and the
baselines. The baselines are created by combining the learning-to-
rank algorithm with the state-of-the-art debiasing methods.
• Regression-EM: Wang et al. [43] proposed regression-based EM
method where position bias is estimated directly from regular
production clicks.

• Dual Learning Algorithm: Ai et al. [2] proposed a dual learning
which can jointly learn a ranker and conduct debiasing of click
data.

• Ratio Debiasing: Hu et al. [17] proposed an unbiased pair-wise
learning-to-rank based on inverse propensity weight (IPW) [42].

• Point-wise Debiasing: Our proposed debiasing method DRSR
which is adapted in point-wise setting.

• Pair-wise Debiasing: Our proposed debiasing method DRSR
which is adapted in pair-wise setting.

• Click Data: We utilize the raw click data without debiasing to
train the ranker, whose performance is regarded as a lower bound.

• Labeled Data: The human annotated relevance labels without
any bias are used as data for training the ranker and we consider
its performance as an upper bound.
There are several learning-to-rank algorithms cooperated with

debiasing methods.
• DRSR: Our model.
• DNN: A deep neural network as described in [2] is implemented
as a ranker.

• LambdaMART: We implement Unbiased LambdaMART by mod-
ifying the LambdaMART tool in LightGBM [24].
In summary, there are 11 baselines to compare with our model.

Note that Dual Learning and DNN are tightly coupled. Also, the
same situation happens in Ratio Debiasing and LambdaMART. We
don’t combine Ratio Debiasing with DNN and Dual Learning with
LambdaMART, as it’s beyond the scope of this paper.

5.3 Result Analysis
Experimental Results and Analysis (RQ1). Table 2 summerizes
the results. We see that our method of Deep Recurrent Survival
Ranking Models (DRSR + Pointwise Debiasing / Pairwise Debias-
ing) signi�cantly outperform all the other baseline methods. The

results of Ratio Debiasing, Regression-EM and Dual Learning Algo-
rithm are compariable with those reported in the original papers.
In particular, we have the following �ndings:
• Our models based DRSR achieve better performances than all the
state-of-the-art methods in terms of all measures, which indicates
our framework DRSR outperforms other models such as Lamb-
daMART and DNN. The reason seems to be that our framework
enables to �nd correlation of user various behaviors and mine
hidden observe pattern in non-click queries.

• Pairwise Debiasing works better than the other debiasing methods
when combined with DRSR framework. This implies that consid-
ering relative relations between trusted and untrusted observation
can enhance model performance.

• When conducted in Alibaba Recommender System, the perfor-
mances of all models decrease signi�cantly. This implies that items
in recommendation are in a larger scale and have a more complex
feature space than in search engine.

• The performances of Pairwise Debiasing and Pointwise Debias-
ing get closer in Alibaba Recommender System. This indicates
that it is challenging to de�ne and capture relative relevance in
recommendation, since various items in di�erent categories can
be displayed at the same time. Also, the user preference is more
personalized, dynamic and even noisy.

Ablation Study (RQ2). In order to analyze the importance of
survival model (debiasing method) and recurrent neural network
(ranker), we also conduct experiment of recurrent neural network
without survival model and summarize results as Click Data of
DRSR in Table 2. We can �nd that sophisticated algorithms like
DRSR and LambdaMART are sensitve to position bias when compar-
ing the performance of Click Data with Debiasing methods, which
indicates the signi�cance for unbiased learning-to-rank. Also, we
can see that when trained with human labeled data, DRSR achieves
the best performance (Labeled Data) which implies that there is
still much room for improvement in unbiased learning-to-rank.

Visualization Analysis (RQ2). We investigated whether the per-
formance improvement by DRSR is indeed from reduction of po-
sition bias through comparing the ranking list given by the initial
ranker with debiased ranker.
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Figure: Average positions after re-ranking of documents
at each original position by different debiasing methods
combined with DRSR.

Figure 5: (a) & (b) Performance of DRSR against other debiasing methods with di�erent degrees of position bias. (c) Perfor-
mance of DRSR against other debiasing methods with di�erent sizes of training data.

We �rst identi�ed the documents at each position given by the
initial ranker. Then, we calculated the average positions of the
documents at each original position after re-ranking by various
debiasing methods, combined with DRSR. We also calculated the
average positions of the documents after re-ranking by their rel-
evance labels, which is regarded as the ground truth. Ideally, the
average positions by the debiasing methods should get close to
the average position by the relevance labels. We summarized the
results and show them in Figure 6.

One can see that the curve of Click Data (in red) is away from
that of Relevance Label (in purple), indicating that directly using
click data without debiasing can be problematic. The curve of Pair-
wise Debiasing (in blue) and Pointwise Debiasing (in orange) are
the closest to the curve of Relevance Label, representing that the
performance enhancement of DRSR is indeed from e�ective debias-
ing.

Generalizability Analysis (RQ3). The click data utilized in Ta-
ble 2 is generated by Click Chain Model (CCM), a cascade model,
which assumes that the user browses the search results in a sequen-
tial order. One can see that setting of DRSR and CCM match each
other well, which may a�ect the performance. Hence, we need to
evaluate DRSR in a more general view. The Position Based Model
(PBM) assumes that the bias of a document only depends on its
position, which is a general approximation of user click behavior in
practice. We compared the same baseline methods here. Again, we
found that DRSR signi�cantly outforms the baselines, indicating
that our model is indeed an e�ective method.

Figure 6: Average positions after re-ranking of documents at
each original position by di�erent debiasing methods com-
bined with DRSR.

Table 3: Comparison with PBM as click generation model.
Notations are same with Table 2.

Yahoo Search Engine (PBM)
Ranker MAP NDCG@1 NDCG@3 NDCG@5

DRSR (Ours)

0.861 0.747 0.759 0.771
0.848⇤ 0.726⇤ 0.737⇤ 0.745⇤
0.843⇤ 0.723⇤ 0.731⇤ 0.740⇤
0.834 0.698 0.705 0.712
0.825 0.671 0.679 0.693

LambdaMART

0.854 0.745 0.745 0.757
0.836 0.717 0.716 0.728
0.830 0.685 0.684 0.700
0.820 0.658 0.669 0.672

DNN

0.831 0.677 0.685 0.705
0.828 0.674 0.683 0.697
0.829 0.676 0.684 0.699
0.819 0.637 0.651 0.667

Robustness Analysis (RQ3).We further evaluated the robustness
of DRSR under di�erent degrees of position bias and di�erent size of
training data. In the above experiments, we only tested the perfor-
mance of DRSR with click data generated from a single click model,
i.e., �1 = 0.5 in Click Chain Model and � = 1 in Position Based
Model. Here, �1 and � in�uence the probability that user exams
the next result. Obviously, the smaller �1 and larger � indicate that
the user will have a smaller probability to continue reading, which
means a more severe position bias. Therefore, here we set the two
hyper-parameters to di�erent values and examined whether DRSR
can still work equally well.

Figure 5(a) & (b) show the results in terms of MAP with di�erent
degrees of position bias. The results in terms of other measures
have similar trends. When � in PBM equals 0, there is no position
bias; while �1 in CCM equals 1, there still exist position bias brought
from �2 and �3. The results of all debiasing methods are similar to
that of using click data only. As we add more position bias, i.e., �
increases and �1 decreases, the performances of all the debiasing
methods decrease dramatically. However, under all settings DRSR
can get less a�ected by position bias and consistently maintain the
best results. This indicates that DRSR is robust to di�erent degrees
of position bias.

Next, we investigated the robustness of DRSR under di�erent
sizes of training data. We �rst randomly selected a subset of training
data (i.e., 20% - 100%) to generate di�erent sizes of click datasets,
and then used these datasets to evaluate the performances of DRSR
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training data. In the above experiments, we only tested the perfor-
mance of DRSR with click data generated from a single click model,
i.e., �1 = 0.5 in Click Chain Model and � = 1 in Position Based
Model. Here, �1 and � in�uence the probability that user exams
the next result. Obviously, the smaller �1 and larger � indicate that
the user will have a smaller probability to continue reading, which
means a more severe position bias. Therefore, here we set the two
hyper-parameters to di�erent values and examined whether DRSR
can still work equally well.

Figure 5(a) & (b) show the results in terms of MAP with di�erent
degrees of position bias. The results in terms of other measures
have similar trends. When � in PBM equals 0, there is no position
bias; while �1 in CCM equals 1, there still exist position bias brought
from �2 and �3. The results of all debiasing methods are similar to
that of using click data only. As we add more position bias, i.e., �
increases and �1 decreases, the performances of all the debiasing
methods decrease dramatically. However, under all settings DRSR
can get less a�ected by position bias and consistently maintain the
best results. This indicates that DRSR is robust to di�erent degrees
of position bias.

Next, we investigated the robustness of DRSR under di�erent
sizes of training data. We �rst randomly selected a subset of training
data (i.e., 20% - 100%) to generate di�erent sizes of click datasets,
and then used these datasets to evaluate the performances of DRSR
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Figure: (a) & (b) Performance of DRSR against other debiasing methods with different degrees of
position bias. (c) with different sizes of training data.
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mance of DRSR against other debiasing methods with di�erent sizes of training data.
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average positions of the documents after re-ranking by their rel-
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average positions by the debiasing methods should get close to
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results and show them in Figure 6.
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click data without debiasing can be problematic. The curve of Pair-
wise Debiasing (in blue) and Pointwise Debiasing (in orange) are
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(PBM) assumes that the bias of a document only depends on its
position, which is a general approximation of user click behavior in
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can still work equally well.
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from �2 and �3. The results of all debiasing methods are similar to
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increases and �1 decreases, the performances of all the debiasing
methods decrease dramatically. However, under all settings DRSR
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best results. This indicates that DRSR is robust to di�erent degrees
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Conclusion

• We adopt survival analysis techniques accompanied with probability
chain rule to derive the joint probability of user various behaviors.

• This framework enables unbiased model to leverage the contextual
information in the ranking list.

• Also, we incorporate with survival analysis, and thus can model the non-
click queries as the censored click logs.

• DRSR can be easily adopted in the pair-wise loss setting to capture
relative relevance between trusted function and untrusted observation.
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