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Biases in Learning-to-Rank

• Explicit feedback: relevance scores.

• Predict relevance probability

query 𝑞

Figure: IMDB Movie
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Biases in Learning-to-Rank

• Implicit feedback: click scores.

• Predict click probability

Figure: Google Search

𝑃(𝑐)

observation

click

𝑃(𝑜)

𝑃(𝑐)

query 𝑞
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Biases in Learning-to-Rank

• Position Bias: users typically peruse presented item lists

from top to bottom, with their attention diminishing rapidly

along the way. Consequently, higher-ranked items receive

more exposure and greater opportunities for observation

and subsequent clicks. Position bias manifests during the

collection of user feedback. 

• Popularity Bias: this bias prompts ranking systems to

recommend popular items more frequently than their

popularity would warrant. Popularity bias occurs when the

system returns ranked lists for user service.

• In both cases, blindly optimizing ranking performance

based on implicit feedback data may inadvertently reinforce

the existing presentation or popularity order rather than

learning personalized relevance.

Figure: An illustrated example of the feedback loop.

These biases tend to be amplified within the feedback

loop, resulting in a “rich-get-richer” dilemma.
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Unbiased Learning-to-Rank

• Biased ranking models trains a ranker 𝑓 that assigns a relevance score to each query-item pair

by using the click data as the supervision. The risk function is:

ℱ 𝑓 = ෍

𝑢

෍

𝑑∈𝒟𝑢

Δ(𝑓 𝑥 , 𝑐)

where Δ(𝑓 𝑥 , 𝑐) denotes a point-wise loss function, 𝑥 denotes the feature and 𝑐 represents

clicks.

• Position Bias: Conventional debiasing methods typically introduce an additional relevance

factor, denoted as 𝑟. These methods estimate 𝑟 instead of 𝑐. They leverage the insight that a user

clicks on an item only when it has been both observed and perceived as relevant:

𝑃 𝐶 = 1 𝑋 = 𝑥 = 𝑃 𝑅 = 1 𝑋 = 𝑥 ⋅ 𝑃(𝑂 = 1|𝑋 = 𝑥)

Unbiased ranking infers relevance from click data and generate a ranked list based on

𝑃 𝑅 = 1 𝑋 = 𝑥 different from biased ranking using 𝑃 𝐶 = 1 𝑋 = 𝑥 .
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Unbiased Learning-to-Rank

• Popularity Bias: As previous debiasing algorithms rely on past user feedback, particularly

clicks, to estimate popularity for an item 𝑑, we employ the notations (𝒞, 𝒪, ℛ) to represent the

set of prior feedback (clicks, observations, relevance). When a ranker can be considered free

from popularity bias if the relevance estimation remains independent of the item’s past click

history. Alternatively, following the idea of collaborative filtering, relevance estimation could

consider the item’s

𝑃 𝑅 = 1 𝒞 = 𝑐 = 1 𝑑 , 𝑋 = 𝑥 = 𝑃(𝑅 = 1|ℛ = 𝑟 = 1 𝑑 , 𝑋 = 𝑥)

𝑐 = 1 𝑑 and 𝑟 = 1 𝑑 do not encompass the “current” click and relevance to be estimated.
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Causality in Ranking

• Our idea is to summarize these biases into a single observation factor: (i) User observation

feedback is influenced by the position of items (Position Bias); (ii) The system generates ranked

lists based on observations or further clicks (Popularity Bias). We consider the observation

factor as the “sensitive attribute”. An ideal ranker should adhere to the following principle:

𝑃 𝑅 = 𝑟 𝑂 = 1, 𝑋 = 𝑥 = 𝑃(𝑅 = 𝑟|𝑂 = 0, 𝑋 = 𝑥)

holds for any relevance score 𝑟 ∈ {0,1} and any observation value o ∈ {0,1} attenable by 𝑂.

• Our evaluation metric can be defined as:

ΔCI ≔ |𝑃 𝑅 = 1 𝑂 = 1, 𝑋 = 𝑥 − 𝑃(𝑅 = 1|𝑂 = 0, 𝑋 = 𝑥)|

• If a ranker is a ranker free from the effect of the observation factor, ΔCI = 0.
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Causality in Ranking

• Position Bias. Convolutional debiasing approaches only introduce the observation factor

(𝑃 𝐶 = 1 𝑋 = 𝑥 = 𝑃 𝑅 = 1 𝑋 = 𝑥 ⋅ 𝑃(𝑂 = 1|𝑋 = 𝑥)), but is not suffice, because the relevance

estimation can still be affected by whether it has been observed or not. To achieve this, we

incorporate our conditional independence (𝑃 𝑅 = 𝑟 𝑂 = 1, 𝑋 = 𝑥 = 𝑃(𝑅 = 𝑟|𝑂 = 0, 𝑋 = 𝑥)) into

it as:

𝑃 𝑅 = 1 𝑋 = 𝑥 = 𝑃(𝑅 = 1|𝑂 = 𝑜, 𝑋 = 𝑥)

where 𝑜 ∈ {0,1}.
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Causality in Ranking
• Popularity Bias. From our conditional independence (𝑃 𝑅 = 𝑟 𝑂 = 1, 𝑋 = 𝑥 = 𝑃(𝑅 = 𝑟|𝑂 =

0, 𝑋 = 𝑥)), we can derive 𝑃 𝒞 = 𝑐 = 1 𝑑 𝒪 = 𝑜 = 1 𝑑 , 𝑋 = 𝑥 = 𝑃 ℛ = 𝑟 = 1 𝑑 𝑋 = 𝑥 ⋅ 𝑃(𝒪 =

𝑜 = 1 𝑑 , 𝑋 = 𝑥). It implies that given the features of an item 𝑑, its previous clicks (i.e., 𝑐 = 1 𝑑)

only occurs when 𝑑 is both relevant ( 𝑟 = 1 𝑑) and observed ( 𝑜 = 1 𝑑) by users. Following this,

we can proceed to derive:

𝑃 𝑅 = 1 𝒞 = 𝑐 = 1 𝑑 , 𝑋 = 𝑥 =
𝑃 𝑅 = 1 𝒪 = 𝑜 = 1 𝑑 , 𝑋 = 𝑥

𝑃 𝑅 = 1 𝑋 = 𝑥
𝑃(𝑅 = 1|ℛ = 𝑟 = 1 𝑑 , 𝑋 = 𝑥)

where 𝑜 ∈ {0,1}.

• Reinforce 𝑂 = 1 and 𝑅 = 1’s independence conditioned on 𝑋 = 𝑥 can lead to an approximation

where
𝑃 𝑅 = 1 𝒪 = 𝑜 = 1 𝑑 , 𝑋 = 𝑥

𝑃 𝑅 = 1 𝑋 = 𝑥 approaches 1. The remaining part 𝑃(𝑅 = 1|ℛ = {

}

𝑟 =

1 𝑑 , 𝑋 = 𝑥) reflects the ranker’s inductive capacity (learning from historical records ℛ =

𝑟 = 1 𝑑 to infer 𝑅 = 1).
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InfoRank Architecture
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Figure: The overall architecture of InfoRank.

• Unbiased Estimation for 𝑹 and 𝑶. We leverage an

attention mechanism to mine correlations between user-

item features. Formally, for the ℎ-th head, we have:

𝛽𝑖𝑗
ℎ

= 𝑥𝑖𝑊𝑇
ℎ

⋅ 𝑥𝑗𝑊𝑇
ℎ

T

where 𝑥𝑖 and 𝑥𝑗 are the 𝑖-th and 𝑗-th feature. 𝑊⋅
ℎ s are

trainable weights and 𝛽𝑖𝑗
ℎ

determines the correlations

between 𝑥𝑖 and 𝑥𝑗. We subsequently normalize this value

within the feature scope as:

𝛼𝑖𝑗
ℎ

= softmax(𝛽𝑖𝑗
ℎ

) =
exp 𝛽𝑖𝑗

ℎ
/𝜄

σ𝑗=0
𝑁−1 exp 𝛽𝑖𝑗

ℎ
/𝜄

where 𝜄 denotes temperature.



InfoRank Architecture
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Figure: The overall architecture of InfoRank.

• Unbiased Estimation for 𝑹 and 𝑶. We jointly attend on

the feature scope from different representation subspaces

to learn stably as:

𝜔𝑖 = 𝜎(𝑊𝑞 ⋅
1

𝐻
෍

ℎ=0

𝐻−1

෍

𝑗=0

𝑁−1

𝛼𝑖𝑗
ℎ

𝑥𝐽𝑊𝐶
ℎ

+ 𝑏𝑞)

where 𝐻 is the number of attention heads, and 𝑊⋅, 𝑏⋅ are

trainable parameters. We further integrate this information

with attention vector 𝑤 to obtain feature embedding 𝑝:

𝑝 =
1

𝑁
෍

𝑖=0

𝑁−1

𝑤T ⋅ tanh(𝑊𝑝 ⋅ 𝜔𝑖 + 𝑏𝑝)

𝑝 is further fed into two separated MLP modules activated by

a sigmoid function without parameter sharing to obtain the

estimation of 𝑃(𝑅 = 1|𝑂 = 𝑜, 𝑋 = 𝑥) and 𝑃 𝑂 = 1𝑋 = 𝑥 .



InfoRank Architecture
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Figure: The overall architecture of InfoRank.

• Estimating 𝑪. Given the distribution 𝑃 𝑂 = 1𝑋 = 𝑥  and

the conditional distribution 𝑃(𝑅 = 1|𝑂 = 𝑜, 𝑋 = 𝑥), we can

compute 𝑃 𝐶 = 1𝑋 = 𝑥  as:

𝑃 𝐶 = 1 𝑋 = 𝑥 = 𝑃 𝑅 = 1 𝑂 = 𝑜, 𝑋 = 𝑥 ⋅ 𝑃 𝑂 = 1 𝑋 = 𝑥

• Conditional Mutual Information. We establish the

following proposition:
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Figure: The overall architecture of InfoRank.

• Conditional Mutual Information. We design ℐ to minimize

the conditional mutual information:

ℐ ≔ ℐ 𝑅; 𝑂 𝑋 = 𝑥

= ෍

𝑅,𝑂

𝑃 𝑅 𝑂, 𝑋 = 𝑥 ⋅ 𝑃 𝑂 𝑋 = 𝑥 ⋅ ln
𝑃(𝑅|𝑂, 𝑋 = 𝑥)

𝑃(𝑅|𝑋 = 𝑥)

We then derive 𝑃(𝑅|𝑋 = 𝑥) using:

𝑃 𝑅 𝑋 = 𝑥 = ෍

𝑂

𝑃 𝑅 𝑂, 𝑋 = 𝑥 ⋅ 𝑃(𝑂|𝑋 = 𝑥)

• Optimization Function. We combine the supervisions over

click data and conditional mutual information minimization

to derive:

argmin𝜃 ℒ + 𝜂 ⋅ ℐ

where 𝜂 is the hyper-parameter for balance. ℒ can be defined as:

ℒ = − ෍

𝑐,𝑥 ∈𝒟

(𝑐 ⋅ log 𝑃 Ƹ𝑐 𝑥 + 1 − 𝑐 ⋅ log(1 − 𝑃 Ƹ𝑐 𝑥 ))
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Figure: The overall architecture of InfoRank. Using the estimation of 𝑃 𝐶 = 1𝑋 = 𝑥  for

training and using the estimation of

𝑃 𝑅 = 1 𝑂 = 𝑜, 𝑋 = 𝑥 for inference.
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Simulator
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• Evaluation of unbiased learning-to-rank algorithms treats their click data as relevance data and generates corresponding

click data by using click models.

• Our click models includes PBM, UBM, and CCM:

• PBM (Position Based Model) simulates user browsing behavior based on the assumption that the bias of an item only

depends on its position, which can be formulated as 𝑃 𝑜𝑖 = 𝜌𝑖
𝜏, where 𝜌𝑖 represents position bias at position 𝑖 and 𝜏 ∈

[0, +∞) is a parameter controlling the degree of position bias. The position bias 𝜌𝑖 is obtained from an eye-tracking

experiment in [Joachims et al., 2005] and the parameter 𝜏 is set as 1.

• UBM (User Browsing Model) assumes that the observation probability depends not only on the rank of an item 𝑑𝑖′ but

also on the rank of the previously clicked item 𝑑𝑖′ as 𝑃 𝑜𝑖 = 1 𝑐𝑖′ = 1, 𝑐𝑖′+1 = 0, … , 𝑐𝑖−1 = 0 = 𝛾0. We get 𝛾0 from the eye-

tracking experiments in [Dupret et al., 2008].

• CCM (Cascade Click Model) assumes that the user browses search results in a sequential order from top to bottom. User

browsing behavior is conditioned on both current and past items, as 𝑃 𝑐𝑖 = 1 𝑜𝑖 = 0 = 0, 𝑃 𝑐𝑖 = 1 𝑜𝑖 = 1, 𝑟𝑖 = 𝑃(𝑟𝑖),

𝑃 𝑜𝑖+1 = 1 𝑜𝑖 = 0 = 0, 𝑃 𝑜𝑖+1 = 1 𝑜𝑖 = 1, 𝑐𝑖 = 0 = 𝛾1, 𝑃 𝑜𝑖+1 = 1 𝑜𝑖 = 1, 𝑐𝑖 = 1, 𝑟𝑖 = 𝛾2 ⋅ 1 − 𝑃 𝑟𝑖 + 𝛾3 ⋅ 𝑃(𝑟𝑖). The

parameters are obtained from an experiment in [Guo et al., 2009].

[Joachims et al., 2005] Thorsten Joachims, et al. Accurately Interpreting Click-Through Data as Implicit Data. SIGIR 2005.

[Guo et al., 2009] Fan Guo, et al. Click Chain Model in Web Search. WWW 2009.

[Dupret et al., 2008] Georges E Dupret et al. A User Browsing Model to Predict Search Engine Click Data from Past Observation. SIGIR 2008.
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Average position after re-ranking of items at
each normalized frequency by different
debiasing methods together with InfoRank and
InfoRank− on Yahoo.

Average position after re-ranking of items at each

original position by different debiasing methods

together with InfoRank and InfoRank− on Yahoo.
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Deployment Feasibility
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• In many tower-based recommendation

platform, existing learning-to-rank

platforms apply a shadow tower

responsible for generating observation

estimations, as position significantly affects

the observation of an item.

• Therefore, to integrate the proposed

mutual information minimization into the

pipeline, we only need to adapt their

regularization term to ours. This

modification mainly involves switching

from the existing “regularization” term to

our proposed “conditional mutual

information regularization” term.



Conclusion
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• We propose to summarize the position bias and popularity bias into a single observation factor.

• We derive the conditional mutual information minimization to push the conditional

independence between the relevance estimation and observation estimation to simultaneously

address the position bias and popularity bias.

• Our InfoRank framework can be seamlessly applied into existing learning-to-rank platforms.
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