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Background: Biases in Learning-to-Rank

Our main idea is to consolidate the impacts of those biases into a single observation factor, thereby providing 

a unified approach to addressing bias-related issues.

An illustrated example of the feedback loop, position bias, and popularity bias in learning-to-rank. Within this 

process, the ranking system blends user and item features (c) with implicit feedback to generate the final 

ranking list. However, this system is susceptible to both position bias and popularity bias (b). Furthermore, 

these biases tend to be amplified within the feedback loop (a), potentially resulting in a “rich-get-richer”

dilemma.
Position bias: items occupying higher positions are more prone to being both observed and subsequently 

clicked. Consequently, training a ranker directly on click data may lead to it primarily estimating the position 

order rather than the personalized relevance of items.

Popularity bias: items with higher levels of popularity are more likely to be posted and then are more 

frequently observed and clicked. Consequently, optimizing a ranker's performance directly on click data may 

result in it primarily estimating the popularity order rather than personalized relevance.

Causality in Learning-to-Rank

We consider the observation factor as the “sensitive attribute”. In this regard, an ideal ranker should adhere 

to the following principle: for any user 𝑢 and item 𝑑, given their associated feature vector 𝒙, we have: 

holds for any relevance score 𝑟 ∈ {0,1}, and any observation value 𝑜 ∈ {0,1} attainable by 

𝑂.
Position bias: in the previous equation, the estimation of an item‘s relevance can still be affected by whether 

it has been observed or not. Therefore, we advocate for an additional step to ensure the conditional 

independence between 𝑅 and 𝑂.

Popularity bias: Consider that given the features of an item 𝑑, its previous clicks (i.e., 𝑐 = 1 𝑑) only occur 

when 𝑑 is both relevant (i.e., 𝑟 = 1 𝑑) and observed (i.e., 𝑜 = 1 𝑑) by users. Following this, we can 

proceed to derive:

Observing 𝒪 = 𝑜 = 1 𝑑 and 𝑂 = 1 are closely correlated, given that they both signify user observations, we 

argue that reinforcing 𝑂 = 1 and 𝑅 = 1’s independence conditioned on 𝑋 = 𝒙 can lead to an approximation 

where 𝑃 𝑅 = 1 𝒪 = 𝑜 = 1 𝑑 , 𝑋 = 𝒙 /𝑃(𝑅 = 1|𝑋 = 𝒙) approaches 1. The remaining part 𝑃(𝑅 = 1|ℛ =
𝑟 = 1 𝑑 , 𝑋 = 𝒙) reflects the ranker‘s inductive capacity. This capacity corresponds to the process of 

learning from the historical records ℛ = 𝑟 = 1 𝑑 to infer 𝑅 = 1, specifically utilizing the past relevance 

feedback for item 𝑑 to infer current behaviour regarding 𝑑. 

InfoRank: Overall Architecture

We first leverage an attention mechanism to mine correlations between 

user-item features, as shown in (a); and we then introduce a 

regularization formulation (i.e., ℐ) aimed at establishing conditional 

mutual information to ensure that relevance becomes conditionally 

independent of the observation factor, as shown in (b). To capture 

relevance within biased feedback, we incorporate this regularization term 

with supervision (i.e., ℒ) over user behaviours.

We note that InfoRank remains working even in scenarios where there 

is no observation information available within user browsing logs. In 

such cases, we substitute real observations with estimated ones.

Conditional Mutual Information

We can define ΔCI ≔ 𝑃 𝑅 = 1 𝑂 = 1, 𝑋 = 𝒙 − 𝑃 𝑅 = 1 𝑂 = 0, 𝑋 = 𝒙 .

Optimization Functions

Regarding ℒ, given that click signals are binary, we employ Binary 

Cross Entropy (BCE) loss for click supervision. The BCE loss can be 

formulated as:
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